Skip to main content
Log in

Magnetic Anisotropy and Switching Behavior of Fe3O4/CoFe2O4 Core/Shell Nanoparticles

  • 5th International Conference of Asian Union of Magnetics Societies
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A uniform core/shell nanoparticle system composed of a soft magnetic core (Fe3O4) and a hard magnetic shell (CoFe2O4) was synthesized and characterized to understand how the shell influences the magnetism and exchange coupling of the system. In the case of Fe3O4(8 nm)/CoFe2O4(2 nm) core/shell nanoparticles, DC and AC susceptibility measurements revealed three features associated with the blocking temperatures of the core/shell system (TB-cs ∼  300 K), the CoFe2O4 shell (TB-s ∼ 200 K), and the Fe3O4 core (TB-c ∼ 50 K). Radio-frequency transverse susceptibility gave a direct probe of the effective magnetic anisotropy field (HK) and switching field (HS), as well as their temperature evolutions. Interestingly, we found that HK of the core/shell structure increased with decreasing temperature. HS was observed only below TB-s, which first decreased drastically with lowering temperature and then increased sharply below TB-c. This is attributed to the effect of a coercive field of CoFe2O4 on the spin flipping of Fe3O4 in the superparamagnetic state (TB-c < T < TB-s) and the blocked state (T < TB-c), respectively. Our study sheds light on the magnetic exchange coupling mechanism in core/shell nanoparticle systems and demonstrates the possibility of controlling the nanomagnetism of a soft magnetic core to which the hard magnetic shell is coupled in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Moon, A.-H. Noh, J.-H. Lee, T.-H. Shin, Y. Lim, and J. Cheon, Nano Lett. 17, 800 (2017).

    Article  Google Scholar 

  2. H. Zeng, L. Li, J.P. Liu, Z.L. Wang, and S.H. Sun, Nature 420, 395 (2002).

    Article  Google Scholar 

  3. A. Lopez-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, and J. Nogues, J. Phys. Rep. 553, 1 (2015).

    Article  Google Scholar 

  4. M.H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K.S. Repa, Z.N. Porshokouh, R. Das, Ò. Iglesias, and H. Srikanth, Nanomaterials 6, 221 (2016).

    Article  Google Scholar 

  5. S. Chandra, H. Khurshid, M.H. Phan, and H. Srikanth, Appl. Phys. Lett. 101, 232405 (2012).

    Article  Google Scholar 

  6. S. Chandra, H. Khurshid, W. Li, G.C. Hadjipanayis, M.H. Phan, and H. Srikanth, Phys. Rev. B 86, 1 (2012).

    Article  Google Scholar 

  7. Z. Nemati, H. Khurshid, J. Alonso, M.H. Phan, P. Mukherjee, and H. Srikanth, Nanotechnology 26, 406705 (2015).

    Article  Google Scholar 

  8. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).

    Article  Google Scholar 

  9. J.H. Lee, J.-T. Jang, J.-S. Choi, S.H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.I.-S. Kim, K.I. Park, and J. Cheon, Nat. Nanotech. 6, 418 (2011).

    Article  Google Scholar 

  10. H. Khurshid, J. Alonso, Z. Nemati, M.H. Phan, P. Mukherjee, M.L. Fdez-Gubieda, J.M. Barandiarán, and H. Srikanth, J. Appl. Phys. 117, 17A33 (2015).

    Article  Google Scholar 

  11. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, and G. Li, J. Am. Chem. Soc. 126, 273 (2014).

    Article  Google Scholar 

  12. V. Gavrilov-Isaac, S. Neveu, V. Dupuis, D. Talbot, V. Cabuil, http://arxiv.org/abs/1402.1950v1 (2014).

  13. H. Srikanth, J. Wiggins, H. Rees, H. Srikanth, J. Wiggins, and H. Rees, Rev. Sci. Instrum. 70, 3097 (1999).

    Article  Google Scholar 

  14. N.A. Frey Huls, N.S. Bingham, M.H. Phan, H. Srikanth, D.D. Stauffer, and C. Leighton, Phys. Rev. B 83, 024406 (2011).

    Article  Google Scholar 

  15. N.A. Frey, S. Srinath, H. Srikanth, M. Varela, S. Pennycook, G.X. Miao, and A. Gupta, Phys. Rev. B 74, 024420 (2006).

    Article  Google Scholar 

  16. S. Chandra, R. Das, V. Kalappattil, T. Eggers, C. Harnagea, R. Nechache, M.H. Phan, F. Rosei, and H. Srikanth, Nanoscale 9, 7858 (2017).

    Article  Google Scholar 

  17. R. Das, J. Alonso, Z.N. Porshokouh, V. Kalappattil, D. Torres, M.H. Phan, E. Garaio, J.Á. García, J.L.S. Llamazares, and H. Srikanth, J. Phys. Chem. C 120, 10086 (2016).

    Article  Google Scholar 

  18. A. Aharoni, E.H. Frei, S. Shtrikman, and D. Treves, Bull. Res. Counc. Isr. 6A, 215 (1957).

    Google Scholar 

Download references

Acknowledgments

Research at the University of South Florida was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438. Joshua Robles acknowledges the financial support provided by the NSF Florida-Georgia Louis Stokes Alliance for Minority Participation (FGLSAMP) through Award No. HRD #1612347.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Das or H. Srikanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Robles, J., Glassell, M. et al. Magnetic Anisotropy and Switching Behavior of Fe3O4/CoFe2O4 Core/Shell Nanoparticles. J. Electron. Mater. 48, 1461–1466 (2019). https://doi.org/10.1007/s11664-018-6778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6778-4

Keywords

Navigation