Skip to main content
Log in

P-Type Characteristic of Nitrogen-Doped ZnO Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) is a promising material for emerging electronic and photonic applications due to its wide direct band gap and large exciton binding energy. Despite on-going developments, the control of the conductivity type in ZnO films continues to be a challenge. Stable p-type ZnO is required in order to fabricate standalone ZnO-based devices. Nitrogen is considered as a promising candidate to produce a shallow acceptor level in ZnO, since it has similar radii and electrical structure to oxygen. In this experiment, we utilize the low cost sol–gel spin coating technique to fabricate nitrogen-doped ZnO (ZnO:N) films. All films show great optical transmittance above 80% in the visible region. ZnO:N film at 15 at.% doping concentration shows strong UV emission and exhibits low resistivity. A pn homojunction device based on ZnO:N shows characteristic of a typical rectifying diode, with a turn-on voltage of approximately 1.2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhou, D. Yi, Z. Yu, L. Xiao, and J. Li, Thin Solid Films 515, 6909 (2007).

    Article  Google Scholar 

  2. E. Fortunato, L. Raniero, L. Siva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L. Pereira, G. Gonçalves, I. Ferreira, E. Elangovan, and R. Martins, Sol. Energy Mater. Sol. Cells 92, 1605 (2008).

    Article  Google Scholar 

  3. Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, and I.E.E.E. Trans, Electron Devices 57, 26 (2010).

    Article  Google Scholar 

  4. M. Kashif, M.E. Ali, S.M.U. Ali, and U. Hashim, Ceram. Int. 39, 6461 (2013).

    Article  Google Scholar 

  5. C.F. Lin, M.S. Lin, C.C. Chen, P.H. Tsai, and F.H. Wang, Surf. Coatings Technol. 231, 161 (2013).

    Article  Google Scholar 

  6. R. Mariappan, V. Ponnuswamy, and P. Suresh, Superlattices Microstruct. 52, 500 (2012).

    Article  Google Scholar 

  7. H. Kumarakuru, D. Cherns, and G.M. Fuge, Surf. Coatings Technol. 205, 5083 (2011).

    Article  Google Scholar 

  8. H.X. Chen, J.J. Ding, X.G. Zhao, and S.Y. Ma, Phys. B Condens. Matter 405, 1339 (2010).

    Article  Google Scholar 

  9. D. Kim, I. Yun, and H. Kim, Curr. Appl. Phys. 10, S459 (2010).

    Article  Google Scholar 

  10. T. Prasada Rao and M.C. Santhosh Kumar, J. Alloys Compd. 506, 788 (2010).

    Article  Google Scholar 

  11. S. Kuprenaite, T. Murauskas, A. Abrutis, V. Kubilius, Z. Saltyte, and V. Plausinaitiene, Surf. Coatings Technol. 271, 156 (2015).

    Article  Google Scholar 

  12. R. Vettumperumal, S. Kalyanaraman, and R. Thangavel, J. Mol. Struct. 1059, 61 (2014).

    Article  Google Scholar 

  13. Z.N. Ng, K.Y. Chan, C.Y. Low, S.A. Kamaruddin, and M.Z. Sahdan, Ceram. Int. 41, S254 (2015).

    Article  Google Scholar 

  14. R. Ebrahimifard, M.R. Golobostanfard, and H. Abdizadeh, Appl. Surf. Sci. 290, 252 (2014).

    Article  Google Scholar 

  15. V. Avrutin, D.J. Silversmith, and H. Morkoç, Proc. IEEE 98, 1269 (2010).

    Article  Google Scholar 

  16. L.-W. Weng, W.-Y. Uen, S.-M. Lan, S.-M. Liao, T.-N. Yang, C.-H. Wu, H.-F. Hong, W.-Y. Ma, and C.-C. Shen, Appl. Surf. Sci. 277, 1 (2013).

    Article  Google Scholar 

  17. F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liu, and W.P. Beyermann, Appl. Phys. Lett. 88, 1 (2006).

    Google Scholar 

  18. S.S. Lin, J.G. Lu, Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, and B.H. Zhao, Solid State Commun. 148, 25 (2008).

    Article  Google Scholar 

  19. M.Y. Tan, C.B. Yao, X.Y. Yan, J. Li, S.Y. Qu, J.Y. Hu, W.J. Sun, Q.H. Li, and S. Bin Yang, Opt. Mater. (Amst). 51, 133 (2016).

    Article  Google Scholar 

  20. W. Jun and Y. Yintang, Mater. Lett. 62, 1899 (2008).

    Article  Google Scholar 

  21. W.W. Liu, Z.Z. Zhang, B. Yao, D.Z. Shen, and C.L. Liu, Opt. Mater. (Amst). 35, 2486 (2013).

    Article  Google Scholar 

  22. S. Dhara and P.K. Giri, Thin Solid Films 520, 5000 (2012).

    Article  Google Scholar 

  23. S. Nagar and S. Chakrabarti, Superlattices Microstruct. 75, 9 (2014).

    Article  Google Scholar 

  24. S. Golshahi, S.M. Rozati, A.M. Botelho do Rego, J. Wang, E. Elangovan, R. Martins, and E. Fortunato, Mater. Sci. Eng. B 178, 103 (2013).

    Article  Google Scholar 

  25. T.K. Pathak, V. Kumar, H.C. Swart, and L.P. Purohit, Phys. B Condens. Matter 480, 31 (2016).

    Article  Google Scholar 

  26. S.S. Shinde, C.H. Bhosale, and K.Y. Rajpure, J. Photochem. Photobiol. B Biol. 113, 70 (2012).

    Article  Google Scholar 

  27. Q. Li, X. Li, and J. Zhang, J. Alloys Compd. 572, 175 (2013).

    Article  Google Scholar 

  28. Z.-N. Ng, K.-Y. Chan, Y.-K. Sin, F.-K. Yam, and D. Knipp, J. Nanosci. Nanotechnol. 17, 348 (2017).

    Article  Google Scholar 

  29. Z.Q. Xu, H. Deng, Y. Li, Q.H. Guo, and Y.R. Li, Mater. Res. Bull. 41, 354 (2006).

    Article  Google Scholar 

  30. K. Shtereva, V. Tvarozek, I. Novotny, J. Kovac, P. Sutta, and A. Vincze, in 2006 25th International Conference Microelectronics MIEL 2006 - Proceedings (IEEE, 2006), pp. 357–360.

  31. L. Duan, W. Zhang, X. Yu, Z. Jiang, L. Luan, Y. Chen, and D. Li, Appl. Surf. Sci. 258, 10064 (2012).

    Article  Google Scholar 

  32. M. Chen, Z.L. Pei, X. Wang, C. Sun, and L.S. Wen, J Vac Sci Technol A Vacuum Surfaces Film 19, 963 (2001).

    Article  Google Scholar 

  33. X.-W. Zhao, X.-Y. Gao, X.-M. Chen, C. Chen, and M.-K. Zhao, Chin. Phys. B 22, 024202 (2013).

    Article  Google Scholar 

  34. B. Houng, C.-L. Huang, and S.-Y. Tsai, J. Cryst. Growth 307, 328 (2007).

    Article  Google Scholar 

  35. S. Al-Khawaja, B. Abdallah, S. Abou Shaker, and M. Kakhia, Interfaces 22, 221 (2015).

    Google Scholar 

  36. S. Khosravi-Gandomani, R. Yousefi, F. Jamali-Sheini, and N.M. Huang, Ceram. Int. 40, 7957 (2014).

    Article  Google Scholar 

  37. K. Chongsri, S. Boonruang, W. Techitdheera, and W. Pecharapa, Mater. Lett. 65, 1842 (2011).

    Article  Google Scholar 

  38. A. Valour, F. Cheviré, F. Tessier, F. Grasset, B. Dierre, T. Jiang, E. Faulques, L. Cario, and S. Jobic, Solid State Science (Amsterdam: Elsevier Masson, 2016), pp. 30–36.

    Google Scholar 

  39. H.T. Chang and G.J. Chen, Thin Solid Films 618, 84 (2016).

    Article  Google Scholar 

  40. G. Yuan, Z. Ye, L. Zhu, Y. Zeng, J. Huang, Q. Qian, and J. Lu, Mater. Lett. 58, 3741 (2004).

    Article  Google Scholar 

  41. R. Swapna and M.C. Santhosh Kumar, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 178, 1032 (2013).

    Article  Google Scholar 

  42. L. Duan, W. Zhang, X. Yu, P. Wang, Z. Jiang, L. Luan, Y. Chen, and D. Li, Solid State Commun. 157, 45 (2013).

    Article  Google Scholar 

  43. I.S. Kim, E.K. Jeong, D.Y. Kim, M. Kumar, and S.Y. Choi, Appl. Surf. Sci. 255, 4011 (2009).

    Article  Google Scholar 

  44. Y.G. Wang, S.P. Lau, X.H. Zhang, H.W. Lee, H.H. Hng, and B.K. Tay, J. Cryst. Growth 252, 265 (2003).

    Article  Google Scholar 

  45. L. Xu, X. Li, and J. Yuan, Superlattices Microstruct. 44, 276 (2008).

    Article  Google Scholar 

  46. X.B. Wang, C. Song, K.W. Geng, F. Zeng, and F. Pan, Appl. Surf. Sci. 253, 6905 (2007).

    Article  Google Scholar 

  47. T.K. Pathak, V. Kumar, H.C. Swart, and L.P. Purohit, Phys. E Low-Dimensional Syst. Nanostructures 77, 1 (2016).

    Article  Google Scholar 

  48. A. Sáaedi, R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, and A. Khorsand, Zak, and N. M. Huang. Superlattices Microstruct. 61, 91 (2013).

    Article  Google Scholar 

  49. Z. Ye, T. Wang, S. Wu, X. Ji, and Q. Zhang, J. Alloys Compd. 690, 189 (2017).

    Article  Google Scholar 

  50. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, and M. Zhou, J. Alloys Compd. 623, 367 (2015).

    Article  Google Scholar 

  51. M.B. Islam, M.M. Rahman, M.K.R. Khan, M.A. Halim, M.A. Sattar, D.K. Saha, and M.A. Hakim, Thin Solid Films 534, 137 (2013).

    Article  Google Scholar 

  52. J. Millman and A. Grabel, Microelectronics (New York: McGraw-Hill, 1987).

    Google Scholar 

  53. J.G. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao, and Q.L. Liang, Appl. Phys. Lett. 88, 222114 (2006).

    Article  Google Scholar 

  54. J.-L. Zhao, X.-M. Li, J.-M. Bian, W.-D. Yu, and C.-Y. Zhang, J. Cryst. Growth 280, 495 (2005).

    Article  Google Scholar 

  55. H. Nian, S.H. Hahn, K.K. Koo, E.W. Shin, and E.J. Kim, Sol-Gel Derived N-Doped ZnO Thin Films. Mater. Lett. 63, 2246 (2009).

    Article  Google Scholar 

  56. S. Kalyanaraman, R. Thangavel, and R. Vettumperumal, J. Phys. Chem. Solids 74, 504 (2013).

    Article  Google Scholar 

  57. C. Park, S. Kim, and S. Lim, Solid State Commun. 167, 18 (2013).

    Article  Google Scholar 

  58. D. Wang, J. Zhou, and G. Liu, J. Alloys Compd. 481, 802 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kah-Yoong Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, ZN., Chan, KY., Muslimin, S. et al. P-Type Characteristic of Nitrogen-Doped ZnO Films. J. Electron. Mater. 47, 5607–5613 (2018). https://doi.org/10.1007/s11664-018-6468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6468-2

Keywords

Navigation