Skip to main content
Log in

On the Samarium Substitution Effects in Y3−xSm x Al5O12 (x = 0.1–3.0)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Yttrium aluminium garnet substituted by samarium Y3−xSm x Al5O12, (YSmAG, x = 0.1, 0.15, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5 and 3.0) was prepared by an aqueous sol–gel processing using etane-1,2-diol as complexing agent. The end products obtained at 1000°C in air were characterized by x-ray diffraction analysis, infrared spectroscopy (FT-IR) and scanning electron microscopy. It was demonstrated, however, that the total substitution of yttrium by samarium does not proceed in the YSmAG. The single cubic garnet phase was formed only at a low concentration of samarium (x = 0.1, 0.15, 0.25, 0.5, 0.75, 1.0). With further substitutional levels, if the amount of samarium was x = 1.5, 2.0, 2.5 and 3, respectively, the formation a of minor amount of side perovskite samarium aluminate SmAlO3 (SmAP) phase was observed. Surprisingly, when yttrium was totally replaced by the samarium (x = 3.0) the main synthesis product was SmAP. The possible formation of Sm3Al5O12 (SmAG) garnet was also investigated for the first time by variation of the temperature in the range of 780–835°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Skaudzius, T. Juestel, and A. Kareiva, Mater. Chem. Phys. 170, 229 (2016).

    Article  Google Scholar 

  2. J.F.C. Carreira, N.B. Sedrine, T. Monteiro, and L. Rino, J. Lumin. 183, 251 (2017).

    Article  Google Scholar 

  3. Y. Kim, K.B. Shim, M. Wu, and H.-K. Jung, J. Alloys Compd. 693, 40 (2017).

    Article  Google Scholar 

  4. X. Li, Q. Li, J. Wang, S. Yang, and H. Liu, Opt. Mater. 29, 528 (2007).

    Article  Google Scholar 

  5. A. de Pablos-Martín and T. Höche, Opt. Lasers Eng. 90, 1 (2017).

    Article  Google Scholar 

  6. L. Pavasaryte, A. Katelnikovas, V. Klimavicius, V. Balevicius, A. Krajnc, G. Mali, J. Plavec, and A. Kareiva, Phys. Chem. Chem. Phys. 19, 3729 (2017).

    Article  Google Scholar 

  7. Y. Tokudome, K. Fujita, K. Nakanishi, K. Kanamori, K. Miura, K. Hirao, and T. Hanada, J. Ceram. Soc. Jpn. 115, 925 (2007).

    Article  Google Scholar 

  8. A. Kareiva, Mater. Sci-Medzg. 17, 428 (2011).

    Google Scholar 

  9. F.A. Selim, A. Khamehchi, D. Winarski, and S. Agarwal, Opt. Mater. Express 6, 3704 (2016).

    Article  Google Scholar 

  10. X. Su, J. Zhou, G. Bai, J. Zhang, and P. Zhao, Ceram. Int. 42, 17497 (2016).

    Article  Google Scholar 

  11. C. Gheorghe, A. Lupei, S. Hău, F. Voicu, L. Gheorghe, and A.M. Vlaicu, J. Alloys Compd. 683, 547 (2016).

    Article  Google Scholar 

  12. L.D. Thu, D.Q. Trung, T.D. Lam, and T.X. Anh, J. Electron. Mater. 45, 2468 (2016).

    Article  Google Scholar 

  13. Q. Zhang, T. Lu, N. Wei, X. Chen, Z. Lu, L. Chen, J. Qi, Z. Huang, T. Hua, S. Wang, Y. Shi, and R. Chen, Mater. Lett. 188, 396 (2017).

    Article  Google Scholar 

  14. N. Dubnikova, E. Garskaite, J. Pinkas, P. Bezdicka, A. Beganskiene, and A. Kareiva, J. Sol-Gel. Sci. Technol. 55, 213 (2010).

    Article  Google Scholar 

  15. A. Katelnikovas, T. Jüstel, D. Uhlich, J.E. Jorgensen, S. Sakirzanovas, and A. Kareiva, Chem. Eng. Commun. 195, 758 (2008).

    Article  Google Scholar 

  16. M. Xu, Z. Zhang, J. Zhao, J. Zhang, and Z. Liu, J. Alloys Compd. 647, 1075 (2015).

    Article  Google Scholar 

  17. R. Skaudžius, D. Enseling, M. Skapas, A. Selskis, E. Pomjakushina, T. Jüstel, A. Kareiva, and C. Rüegg, Opt. Mater. 60, 467 (2016).

    Article  Google Scholar 

  18. A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.E. Jørgensen, and A. Kareiva, J. Cryst. Growth 304, 361 (2007).

    Article  Google Scholar 

  19. N. Dubnikova, E. Garskaite, A. Beganskiene, and A. Kareiva, Opt. Mater. 33, 1179 (2011).

    Article  Google Scholar 

  20. N. Dubnikova, E. Garskaite, R. Raudonis, and A. Kareiva, Mater. Chem. Phys. 137, 660 (2012).

    Article  Google Scholar 

  21. S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Jüstel, J. Lumin. 131, 2255 (2011).

    Article  Google Scholar 

  22. S. Sakirzanovas, A. Katelnikovas, H. Bettentrup, A. Kareiva, and T. Jüstel, J. Lumin. 131, 1525 (2011).

    Article  Google Scholar 

  23. V. Lojpur, A. Egelja, J. Pantić, V. ĐorĐević, B. Matović, and M.D. Dramićanin, Sci. Sinter. 46, 75 (2014).

    Article  Google Scholar 

  24. M. Inoue, H. Otsu, H. Kominami, and T. Inui, J. Alloys Compd. 226, 146 (1995).

    Article  Google Scholar 

  25. A. Kareiva, C.J. Harlan, D.B. MacQueen, R.L. Cook, and A.R. Barron, Chem. Mater. 8, 2331 (1996).

    Article  Google Scholar 

  26. E. Garskaite, S. Sakirzanovas, A. Kareiva, J. Glaser, H.J. Meyer, and Z. Anorg, Allg. Chem. 633, 990 (2007).

    Article  Google Scholar 

  27. O. Fabrichnaya, G. Savinykh, T. Zienert, G. Schreiber, and H.J. Seifert, Int. J. Mater. Res. 103, 1469 (2012).

    Article  Google Scholar 

  28. M. Sertkol, S. Ballıkaya, F. Aydoğdu, A. Güler, M. Özdemir, and Y. Öner, J. Electron. Mater. 46, 73 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aivaras Kareiva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skaudzius, R., Sakirzanovas, S. & Kareiva, A. On the Samarium Substitution Effects in Y3−xSm x Al5O12 (x = 0.1–3.0). J. Electron. Mater. 47, 3951–3956 (2018). https://doi.org/10.1007/s11664-018-6277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6277-7

Keywords

Navigation