Skip to main content
Log in

Effect of Annealing Temperature on Structural and Optical Properties of Sol–Gel-Derived ZnO Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline ZnO thin films were deposited on glass substrate via sol–gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet–visible (UV–Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jain, A. Sanger, S. Chauhan, and R. Chandra, Mater. Res. Express 1, 035046 (2014).

    Article  Google Scholar 

  2. A. Sanger, A. Kumar, A. Kumar, J. Jaiswal, and R. Chandra, Sens. Actuat. B Chem. 236, 16 (2016).

    Article  Google Scholar 

  3. A. Sanger, P.K. Jain, Y.K. Mishra, and R. Chandra, Sens. Actuat. B Chem. 242, 694 (2017).

    Article  Google Scholar 

  4. A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, and R. Chandra, Ind. Eng. Chem. Res. 55, 9452 (2016).

    Article  Google Scholar 

  5. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).

    Article  Google Scholar 

  6. T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, Sol. Energy 77, 739 (2004).

    Article  Google Scholar 

  7. S.Y. Lee, E.S. Shim, H.S. Kang, S.S. Pang, and J.S. Kang, Thin Solid Films 31, 437 (2005).

    Google Scholar 

  8. R. Könenkamp, R.C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004).

    Article  Google Scholar 

  9. S.T. McKinstry and P. Muralt, Electroceram. J. 7, 12 (2004).

    Google Scholar 

  10. Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater. 14, 943 (2004).

    Article  Google Scholar 

  11. M.S. Wagh, L.A. Patil, T. Seth, and D.P. Amalnerkar, Mater. Chem. Phys. 84, 228 (2004).

    Article  Google Scholar 

  12. Y. Ushio, M. Miyayama, and H. Yanagida, Sens. Actuat. B 17, 221 (1994).

    Article  Google Scholar 

  13. H. Harima, J. Phys. Condens. Matter 16, S5653 (2004).

    Article  Google Scholar 

  14. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).

    Article  Google Scholar 

  15. J. Zhang, L.D. Sun, J. Yin, H. Su, C.S. Liao, and C. Yan, Chem. Mater. 14, 4172 (2002).

    Article  Google Scholar 

  16. J. Lee, A.J. Easteal, U. Pal, and D. Bhattacharyya, Curr. Appl. Phys. 9, 792 (2009).

    Article  Google Scholar 

  17. S.B. Park, Y.C. Kang, and J. Aerosol, Science 28, S473 (1997).

    Google Scholar 

  18. C.C. Chen, P. Liu, and C.H. Lu, Chem. Eng. J. 144, 509 (2008).

    Article  Google Scholar 

  19. P. Nunes, D. Costa, E. Fortunato, and R. Fortunato, Vacuum 64, 293 (2002).

    Article  Google Scholar 

  20. M. Krunks and E. Mellikov, Thin Solid Films 270, 33 (1995).

    Article  Google Scholar 

  21. K. Tominaga, T. Takao, A. Fukushima, T. Moriga, and I. Nakabayashi, Vacuum 66, 505 (2002).

    Article  Google Scholar 

  22. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Gantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  Google Scholar 

  23. N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.B. Leriche, and C. Guery, J. Mater. Chem. 10, 2315 (2000).

    Article  Google Scholar 

  24. https://www.chem.uci.edu/∼lawm/263%204.pdf. Accessed Mar 2018.

  25. A.L. Mercado, C.E. Allmond, J.G. Hoekstra, and J.M. Fitz-Gerald, Appl. Phys. A 81, 591 (2005).

    Article  Google Scholar 

  26. R. Jones and D. Fried, in 4610, Proc. SPIE, 187, San Jose, Calif, USA, (2002).

  27. V. Gupta and A. Mansingh, J. Appl. Phys. 80, 1063 (1996).

    Article  Google Scholar 

  28. G. Kenanakis, Z. Giannakoudakis, D. Vernardou, C. Savvakis, and N. Katsarakis, Catal. Today 151, 34 (2010).

    Article  Google Scholar 

  29. L.Y. Zhang, L.W. Yin, C.X. Wang, N. Lun, and Y.X. Qi, ACS Appl. Mater. Interfaces 2, 1769 (2010).

    Article  Google Scholar 

  30. S. Sanjeev and D. Kekuda, IOP Conf. Ser. Mater. Sci. Eng. 73, 012149 (2015).

    Article  Google Scholar 

  31. M. Caglar, Y. Caglar, and S. Ilican, J. Optoelectron. Adv. Mater. 8, 1410 (2006).

    Google Scholar 

  32. R.K. Shukla, A. Srivastava, A. Srivastava, and K.C. Dubey, J. Cryst. Growth 294, 427 (2006).

    Article  Google Scholar 

  33. F.E. Ghodsi and H. Absalan, Acta Phys. Pol. A 118, 659 (2010).

    Article  Google Scholar 

  34. J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, and Z. Sun, Superlattice. Microst. 50, 98 (2011)

  35. K. Jindal, M. Tomar, R.S. Katiyar, and V. Gupta, J. Appl. Phys. 111, 102805 (2012).

    Article  Google Scholar 

  36. N. Bouchenak, N.E. Khelladi, and C. Sari, Adv. Mater. Sci. 13, 35 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Sanger, A., Vilarinho, P.M. et al. Effect of Annealing Temperature on Structural and Optical Properties of Sol–Gel-Derived ZnO Thin Films. J. Electron. Mater. 47, 3678–3684 (2018). https://doi.org/10.1007/s11664-018-6217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6217-6

Keywords

Navigation