Skip to main content
Log in

Comparative Study of EPR and Optical Properties of CdS, TiO2 and CdS-TiO2 Nanocomposite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An economical chemical route is used to synthesize a titanium oxide-based nanocomposite (NC) which has properties that may help to develop photocatalysts with improved efficiency in the visible region of solar light. Investigation of opto-electronic properties has been carried out for a CdS, TiO2 and CdS-TiO2 NC at room temperature. Structural properties of the CdS and TiO2 nanoparticles and the CdS-TiO2 NC were investigated using x-ray diffraction and transmission electron microscopy techniques. How incorporation of CdS nanoparticles affects the structural properties of pure TiO2 was also studied. Change in optical behavior was compared using UV–visible and photoluminescence spectra, and the presence of residual functional groups were indicated by Fourier-transform infrared analysis of the samples. The measurement of band levels was carried out by cyclic voltammetry (CV) and the band gap estimated from UV–visible was compared to that obtained by CV. The electron paramagnetic resonance technique was used for the investigation of the electronic properties of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Zhang, S. Liu, X. Fu, and Y.J. Xu, J. Mater. Chem. 22, 5042 (2012).

    Article  Google Scholar 

  2. P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych, Mater. Res. 12, 11 (2009).

    Article  Google Scholar 

  3. L. Cao, X. Wu, Q. Wang, and J. Wang, J. Photochem. Photobiol. B 178, 440 (2018).

    Article  Google Scholar 

  4. M. Salarian, W.Z. Xu, Z. Wang, T.-K. Sham, and P.A. Charpentier, ACS Appl. Mater. Interfaces 6, 16918 (2014).

    Article  Google Scholar 

  5. E. Bet-moushoul, Y. Mansourpanah, Kh Farhadi, and M. Tabatabaei, Chem. Eng. J. 283, 29 (2016).

    Article  Google Scholar 

  6. K. Zhang and H.J. Choi, Materials 7, 3399 (2014).

    Article  Google Scholar 

  7. A. Truppi, F. Petronella, T. Placido, M. Striccoli, A. Agostiano, M.L. Curri, and R. Comparelli, Catalysts 7, 100 (2017).

    Article  Google Scholar 

  8. D. Zhao and C.-F. Yang, Renew. Sustain. Energy Rev. 54, 1048 (2016).

    Article  Google Scholar 

  9. G.-S. Li, D.-Q. Zhang, and J.C. Yu, Environ. Sci. Technol. 43, 709 (2009).

    Article  Google Scholar 

  10. S. Bera, S.B. Rawal, H.J. Kim, and W.I. Lee, ACS Appl. Mater. Interfaces 6, 9654 (2014).

    Article  Google Scholar 

  11. H. He, A. Chen, H. Lv, and C. Li, Mod. Phys. Lett. B 27, 1341015 (2013).

    Article  Google Scholar 

  12. S. Chaguetmi, F. Mammeri, M. Pasut, S. Nowak, H. Lecoq, P. Decorse, C. Costentin, S. Achour, and S. Ammar, J. Nanopart. Res. 15, 2140 (2013).

    Article  Google Scholar 

  13. T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, and S.L. Suib, Molecules 21, 900 (2016).

    Article  Google Scholar 

  14. W. Aashir, Z. Qianpeng, T.M. Mahdi, L.S. Fung, G. Leilei, H. Jin, M. Xiaoliang, and F. Zhiyong, Sci. Bull. 61, 86 (2016).

    Article  Google Scholar 

  15. J.C. Védrine, Catalysts 7, 341 (2017).

    Article  Google Scholar 

  16. W.-W. So, K.-J. Kim, and S.-J. Moon, Int. J. Hydrog. Energy 29, 229 (2004).

    Article  Google Scholar 

  17. C.-R. Ke, J.-S. Guo, Y.-H. Su, and J.-M. Ting, Nanotechnology 27, 435405 (2016).

    Article  Google Scholar 

  18. P.D. Tran, L.H. Wong, J. Barber, and J.S. Loo, Environ. Sci. 5, 5902 (2012).

    Google Scholar 

  19. L.-L. Tan, W.-J. Ong, S.-P. Chai, and A.R. Mohamed, Nanoscale Res. Lett. 8, 465 (2013).

    Article  Google Scholar 

  20. Z. Chen, S. Liu, M.-Q. Yang, and Y.-J. Xu, ACS Appl. Mater. Interfaces 5, 4309 (2013).

    Article  Google Scholar 

  21. K.-H. Lin, C.-Y. Chuang, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, I.-P. Liu, S.-C. Chou, and Y.-L. Lee, J. Phys. Chem. C 116, 1550 (2012).

    Article  Google Scholar 

  22. G.-S. Li, D.-Q. Zhang, and J.C. Yu, Environ. Sci. Technol. 43, 7079 (2009).

    Article  Google Scholar 

  23. D. Wu, F. Wang, Y. Tana, and C. Li, RSC Adv. 6, 73522 (2016).

    Article  Google Scholar 

  24. T. Senasu and S. Nanan, J. Mater. Sci. Mater. Electron. 28, 17421 (2017).

    Article  Google Scholar 

  25. H. Zhang, G. Chen, and D.W. Bahnemann, J. Mater. Chem. 19, 5089 (2009).

    Article  Google Scholar 

  26. L.J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Appl. Phys. Lett. 91, 023116 (2007).

    Article  Google Scholar 

  27. A.-M. Ilyas, M.A. Gondal, Z.H. Yamani, and U. Baig, Int. J. Energy Res. 41, 1422 (2017).

    Article  Google Scholar 

  28. M.M. Khan, S.A. Ansari, D. Pradhan, M. Omaish Ansari, D.H. Han, J. Leea, and M.H. Cho, J. Mater. Chem. A 2, 637 (2014).

    Article  Google Scholar 

  29. S.A. Ansari and M.H. Cho, Sci. Rep. 6, 25405 (2016).

    Article  Google Scholar 

  30. Y. Bessekhouad, D. Robert, and J. Weber, J. Photochem. Photobiol. A 163, 569 (2004).

    Article  Google Scholar 

  31. W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, and J. Peng, J. Am. Chem. Soc. 132, 12619 (2010).

    Article  Google Scholar 

  32. S. Liu, N. Zhang, Z.-R. Tang, and Y.-J. Xu, ACS Appl. Mater. Interfaces 4, 6378 (2012).

    Article  Google Scholar 

  33. N. Zhang, S. Liu, X. Fu, and Y.-J. Xu, J. Mater. Chem. 22, 5042 (2012).

    Article  Google Scholar 

  34. Z. Chen and Y.-J. Xu, ACS Appl. Mater. Interfaces 5, 13353 (2013).

    Article  Google Scholar 

  35. W. Donga, F. Pana, L. Xua, M. Zhengc, C.H. Sowc, K. Wub, G.Q. Xua, and W. Chena, Appl. Surf. Sci. 349, 279 (2015).

    Article  Google Scholar 

  36. G. Xu, S. Ji, C. Miao, G. Liu, and C. Ye, J. Mater. Chem. 22, 4890 (2012).

    Article  Google Scholar 

  37. S.K. Haram, B.M. Quinn, and A.J. Bard, J. Am. Chem. Soc. 123, 8860 (2001).

    Article  Google Scholar 

  38. P. Prasannalakshmi, N. Shanmugam, and A.S. Kumar, J. Appl. Electrochem. 47, 889 (2017).

  39. L.-B. Xiong, J.-L. Li, B. Yang, and Y. Yu, J. Nanomater. 13, 831524 (2012).

    Google Scholar 

  40. T.A. Konovalova, L.D. Kispert, and V.V. Konovalov, J. Phys. Chem. B 103, 4672 (1999).

    Article  Google Scholar 

  41. L. Wu, J.C. Yu, and X. Fu, J. Mol. Catal. A Chem. 244, 25 (2006).

    Article  Google Scholar 

  42. S. Yu, J. Hu, and J. Li, Int. J. Photoenergy (2014). https:// doi.org/10.1155/2014/854217.

    Google Scholar 

  43. S. Dutta, R. Sahoo, C. Ray, S. Sarkar, J. Jana, Y. Negishib, and T. Pa, Dalton Trans. 44, 193 (2015).

    Article  Google Scholar 

  44. T.K. Jana, A. Pal, and K. Chatterjee, J. Alloys Compd. 583, 510 (2014).

    Article  Google Scholar 

  45. A.K. Gupta and R. Kripal, Spectrochim. Acta Part A 96, 626 (2012).

    Article  Google Scholar 

  46. R. Kripal and U.M. Tripathi, Adv. Sci. Eng. Med. 9, 130 (2017).

    Article  Google Scholar 

  47. B.S. Rao, B.R. Kumar, V.R. Reddy, and T.S. Rao, Chalcogenide Lett. 8, 177 (2011).

    Google Scholar 

  48. E. Kucur, J. Riegler, G.A. Urban, and T. Nann, J. Chem. Phys. 119, 2333 (2003).

    Article  Google Scholar 

  49. V. Bala, S.K. Tripathi, and R. Kumar, J. Nanoeng. Nanomanuf. 4, 2157 (2014).

    Google Scholar 

  50. K. Das and S.K. De, J. Phys. Chem. C 113, 3494 (2009).

    Article  Google Scholar 

  51. P. Praveen, G. Viruthagiri, S. Mugundan, and N. Shanmugam, Spectrochim. Acta Part A 120, 548 (2014).

    Article  Google Scholar 

  52. J. Yang, J.-H. Zeng, S.-H. Yu, L. Yang, G.-E. Zhou, and Y.-T. Qian, Chem. Mater. 12, 3259 (2000).

    Article  Google Scholar 

  53. T.F. Yen, Electron Spin Resonance of Metal Complexes (New York: Plenum press, 1969).

    Book  Google Scholar 

  54. A. Lund, M. Shiotani, and S. Shimada, Principles and Applications of ESR Spectroscopy (Berlin: Springer, 2011).

    Book  Google Scholar 

Download references

Acknowledgments

The authors are gratified to the Head, SAIF, I. I. T. Mumbai, Powai, Mumbai, for providing the facility of the EPR spectrometer. One of the authors, Garima Vaish, is grateful to the Head, Department of Physics, University of Allahabad, Allahabad, for providing departmental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kripal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kripal, R., Vaish, G. & Tripathi, U.M. Comparative Study of EPR and Optical Properties of CdS, TiO2 and CdS-TiO2 Nanocomposite. J. Electron. Mater. 48, 1545–1552 (2019). https://doi.org/10.1007/s11664-018-06894-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06894-w

Keywords

Navigation