Skip to main content
Log in

Frequency-Selective Surface to Determine Permittivity of Industrial Oil and Effect of Nanoparticle Addition in X-Band

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A frequency-selective surface (FSS) structure is proposed for characterization of the permittivity of industrial oil using a transmission/reflection (TR) measurement scheme␣in the X-band. Moreover, a parameter study is presented to distinguish the dielectric constant and loss characteristics of test materials. To model the loss empirically, we used CuO nanoparticles artificially mixed with an industrial oil. In this study, the resonant frequency of the FSS is the basic parameter used to determine the material characteristics, including resonance properties such as the magnitude of transmission (S 21), bandwidth, and frequency shift. The results reveal that the proposed FSS structure and setup can act well as a sensor for characterization of the dielectric properties of industrial oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, IEEE Sens. J. 14, 1345 (2014).

    Article  Google Scholar 

  2. J. Han and W. Geyi, IEEE Antennas Wirel. Propag. Lett. 12, 425 (2013).

    Article  Google Scholar 

  3. A.K. Jha and M.J. Akhtar, IEEE Trans. Microw. Theory Tech. 63, 2418 (2015).

    Article  Google Scholar 

  4. M.H. Zarifi, M. Rahimi, M. Daneshmand, and T. Thundat, Sens. Actuators B Chem. 224, 632 (2016).

    Article  Google Scholar 

  5. H. Lobato-Morales, D.V.B. Murthy, A. Corona-Chávez, J.L. Olvera-Cervantes, J. Martínez-Brito, and L.G. Guerrero-Ojeda, IEEE Trans. Microw. Theory Tech. 59, 1863 (2011).

    Article  Google Scholar 

  6. K. Han, M. Swaminathan, P.M. Raj, H. Sharma, R. Tummala, V. Nair, IEEE 64th Electronic Components and Technology Conference (ECTC) (2014), pp. 782–788.

  7. F. Bayatpur, K. Sarabandi, and I.E.E.E. Microw, Wirel. Compon. Lett. 20, 79 (2010).

    Article  Google Scholar 

  8. M. Naser-Moghadasi, R. Ahmadian, Z. Mansouri, F.B. Zarrabi, and M. Rahimi, Prog. Electromagn. Res. C 53, 145 (2014).

    Article  Google Scholar 

  9. E. Semouchkina, R. Duan, N.P. Gandji, S. Jamilan, G. Semouchkin, and R. Pandey, J. Opt. 18, 044007 (2016).

    Article  Google Scholar 

  10. F. Costa, C. Amabile, A. Monorchio, and E. Prati, IEEE Microw. Wirel. Compon. Lett. 21, 273 (2011).

    Article  Google Scholar 

  11. F. Costa, A. Monorchio, C. Amabile, E. Prati, IEEE 41st European Microwave Conference (EuMC) (2011), pp. 945–948.

  12. M. Majidzadeh, C. Ghobadi, and J. Nourinia, AEU-Int. J. Electron. Commun. 70, 151 (2016).

    Article  Google Scholar 

  13. B. Widenberg, S. Poulsen, and A. Karlsson, J. Electromagn. Waves Appl. 14, 1303 (2000).

    Article  Google Scholar 

  14. L. Puscasu, W.L. Schaich, and G.D. Boreman, Appl. Opt. 40, 118 (2001).

    Article  Google Scholar 

  15. H. Chen, X. Hou, and L. Deng, IEEE Antennas Wirel. Propag. Lett. 8, 1231 (2009).

    Article  Google Scholar 

  16. A. Nejati, R.A. Sadeghzadeh, and F. Geran, Phys. B Condens. Matter 449, 113 (2014).

    Article  Google Scholar 

  17. M.C. Neto, J.P.L. Araújo, F.J.B. Barros, A.N. Silva, G.P.S. Cavalcante, and A.G. d’Assunção, Microw. Opt. Technol. Lett. 57, 2400 (2015).

    Article  Google Scholar 

  18. M. Li and N. Behdad, IEE Trans. Antennas Propag. 61, 677 (2013).

    Article  Google Scholar 

  19. F.S. Jafari, F. Kazemi, J. A. Shokouh, Electrical Power Distribution IEEE 20th Networks Conference (EPDC) (2015),pp. 277–279.

  20. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, D. Abbott, Sens. Actuators A, Phys.189, 233 (2013).

  21. C.A. Balanis, Advanced Engineering Electromagnetic, 2nd ed. (New York: Wiley, 2012).

    Google Scholar 

  22. A.A. Helmy and K. Entesari, IEEE Trans. Microw. Theory Tech. 60, 4157 (2012).

    Article  Google Scholar 

  23. A.M. Nicolson and G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).

    Article  Google Scholar 

  24. H. Zhang, S. Pan, and I.E.E.E. Microw, Wirel. Compon. Lett. 23, 623 (2013).

    Article  Google Scholar 

  25. H. Lobato-Morales, A. Corona-Chavez, J.L. Olvera-Cervantes, R.A. Chávez-Pérez, and J.L. Medina-Monroy, IEEE Trans. Microw. Theory Tech. 62, 2160 (2014).

    Article  Google Scholar 

  26. H. Ebara, T. Inoue, and O. Hashimoto, Sci. Technol. Adv. Mater. 7, 77 (2006).

    Article  Google Scholar 

  27. V. Komarov, S. Wang, J. Tang, Encyclopedia of RF and Microwave Engineering, ed. By K. Chang (Wiley, 2005), p. 3693.

  28. M.Y. Onimisi and J.T. Ikyumbur, Am. J. Condens. Matter Phys. 5, 69 (2015).

    Google Scholar 

  29. Y.W. Afsar, Prog. Electromagn. Res. 42, 131 (2003).

    Article  Google Scholar 

  30. J. Miao, M. Dong, M. Ren, X. Wu, L. Shen, and H. Wang, Appl. Phys. 113, 204103 (2013).

    Article  Google Scholar 

  31. A. Ghadimi, R. Saidur, and H.S.C. Metselaar, Int. J. Heat Mass Transf. 54, 4051 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Ahmadi-Shokouh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, F.S., Ahmadi-Shokouh, J. Frequency-Selective Surface to Determine Permittivity of Industrial Oil and Effect of Nanoparticle Addition in X-Band. J. Electron. Mater. 47, 1397–1404 (2018). https://doi.org/10.1007/s11664-017-5944-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5944-4

Keywords

Navigation