Skip to main content
Log in

Atmospheric Processing of Perovskite Solar Cells Using Intense Pulsed Light Sintering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Atmospheric processing of metal–organic halide perovskite materials is highly desirable for large-scale manufacturing of solar cells. Atmospheric deposition and thermal processing of perovskite thin films for photovoltaic applications facilitated via rapid intense pulsed light (IPL) processing have been carried out. The interplay between the deposition chemistry, process, and IPL parameters to produce a functional photoactive thin film is discussed. Further addition of polyvinylpyrrolidone (PVP) as functional surfactant is explored to influence grain growth during the IPL process. Structural analysis by x-ray diffraction revealed formation of mixed-phase perovskite crystals from methylammonium chloride and lead iodide precursors. Ultraviolet–visible (UV–Vis) spectroscopy indicated that the light absorption by the perovskite films lay within a narrow band of the visible spectrum with bandgap of 2.9 eV. Scanning electron microscopy characterization of the surface morphology of the perovskite films revealed that addition of PVP to the ink chemistry assisted the IPL process in forming a fully covered surface with clearly defined grains. Functional devices with perovskite thin film processed by IPL under fully atmospheric conditions were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Ellabban, H. Abu-Rub, and F. Blaabjerg, Renew. Sustain. Energy Rev. 39, 748 (2014).

    Article  Google Scholar 

  2. N. S. Lewis, Science 351, aad1920 (2016).

  3. T.D. Lee and A.U. Ebong, Renew. Sustain. Energy Rev. 70, 1286 (2016).

    Article  Google Scholar 

  4. B. Liu, L. Bai, Z. Chen, X. Zhang, D. Zhang, J. Ni, Q. Huang, C. Wei, J. Sun, and X. Chen, Prog. Photovolt Res. Appl. 23, 1313 (2015).

    Article  Google Scholar 

  5. A. Khalil, Z. Ahmed, F. Touati, and M. Masmoudi, in 2016 13th International Multi-Conference on Systems, Signals and Devices (SSD) (2016), p. 342.

  6. J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Renew. Sustain. Energy Rev. 68, 234 (2017).

    Article  Google Scholar 

  7. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z.L. Wang, Nat. Energy 1, 16138 (2016).

    Article  Google Scholar 

  8. N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, X. Fan, and C. Tao, Adv. Mater. 28, 263 (2016).

    Article  Google Scholar 

  9. NREL, Best Research-Cell Efficiencies. (NREL, 2017). https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 07 Mar 2017.

  10. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Article  Google Scholar 

  11. N.-G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).

    Article  Google Scholar 

  12. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).

    Article  Google Scholar 

  13. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel, and J.-E. Moser, Nat. Photon. 8, 250 (2014).

    Article  Google Scholar 

  14. J.-H. Im, H.-S. Kim, and N.-G. Park, APL Mater. 2, 081510 (2014).

    Article  Google Scholar 

  15. J. Ye, G. Liu, L. Jiang, H. Zheng, L. Zhu, X. Zhang, H. Wang, X. Pan, and S. Dai, Appl. Surf. Sci. 407, 427 (2017).

    Article  Google Scholar 

  16. M.K. Gangishetty, R.W. Scott, and T.L. Kelly, Nanoscale 8, 6300 (2016).

    Article  Google Scholar 

  17. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Nano Lett. 13, 1764 (2013).

    Article  Google Scholar 

  18. G.P. Nagabhushana, R. Shivaramaiah, and A. Navrotsky, Proc. Natl. Acad Sci. USA 113, 7717 (2016).

    Article  Google Scholar 

  19. Y. Ding, X. Yao, X. Zhang, C. Wei, and Y. Zhao, J. Power Sources 272, 351 (2014).

    Article  Google Scholar 

  20. H. Gao, C. Bao, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fu, and Z. Zou, ACS Appl. Mater. Interfaces 7, 9110 (2015).

    Article  Google Scholar 

  21. G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. van Franeker, D.W. deQuilettes, S. Pathak, R.J. Sutton, G. Grancini, and D.S. Ginger, ACS Nano 9, 9380 (2015).

    Article  Google Scholar 

  22. D. Li, S. A. Bretschneider, V. W. Bergmann, I. M. Hermes, J. Mars, A. Klasen, H. Lu, W. Tremel, M. Mezger, and H.-J. r. Butt, J. Phys. Chem. C 120, 6363 (2016).

  23. J. Pan, C. Mu, Q. Li, W. Li, D. Ma, and D. Xu, Adv. Mater. 28, 8309 (2016).

    Article  Google Scholar 

  24. J. Narayan and O. Holland, J. Appl. Phys. 56, 2913 (1984).

    Article  Google Scholar 

  25. M. Bertolotti, Physical Processes in Laser-Materials Interactions, ed. M. Bertolotti (New York: Springer, 1983), p. 175.

    Chapter  Google Scholar 

  26. R. Dharmadasa, I. Dharmadasa, and T. Druffel, Adv. Eng. Mater. 16, 1351 (2014).

    Article  Google Scholar 

  27. R. Dharmadasa, B. Lavery, I. Dharmadasa, and T. Druffel, ACS Appl. Mater. Interfaces 6, 5034 (2014).

    Article  Google Scholar 

  28. M. Jha, R. Dharmadasa, G. Draper, A. Sherehiy, G. Sumanasekera, D. Amos, and T. Druffel, Nanotechnology 26, 175601 (2015).

    Article  Google Scholar 

  29. L. Rebohle, S. Prucnal, and W. Skorupa, Semicond. Sci. Technol. 31, 103001 (2016).

    Article  Google Scholar 

  30. B.W. Lavery, S. Kumari, H. Konermann, G.L. Draper, J. Spurgeon, and T. Druffel, ACS Appl. Mater. Interfaces 8, 8419 (2016).

    Article  Google Scholar 

  31. J. Troughton, M.J. Carnie, M.L. Davies, C. Charbonneau, E.H. Jewell, D.A. Worsley, and T.M. Watson, J. Mater. Chem. A 4, 3471 (2016).

    Article  Google Scholar 

  32. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, and M.A. Alam, Science 347, 522 (2015).

    Article  Google Scholar 

  33. S. Luo and W.A. Daoud, Materials 9, 123 (2016).

    Article  Google Scholar 

  34. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Nat. Mater. 13, 897 (2014).

    Article  Google Scholar 

  35. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, J. Mater. Chem. A 1, 5628 (2013).

    Article  Google Scholar 

  36. N. Onoda-Yamamuro, T. Matsuo, and H. Suga, J. Phys. Chem. Solids 53, 935 (1992).

    Article  Google Scholar 

  37. G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, and O.M. Bakr, J. Phys. Chem. Lett. 6, 3781 (2015).

    Article  Google Scholar 

  38. S.T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, and A.K.-Y. Jen, ACS Nano 8, 10640 (2014).

    Article  Google Scholar 

  39. N. Yantara, F. Yanan, C. Shi, H.A. Dewi, P.P. Boix, S.G. Mhaisalkar, and N. Mathews, Chem. Mater. 27, 2309 (2015).

    Article  Google Scholar 

  40. P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J. Lin, and A.K.Y. Jen, Adv. Mater. 26, 3748 (2014).

    Article  Google Scholar 

  41. B.A. Rosales, L. Men, S.D. Cady, M.P. Hanrahan, A.J. Rossini, and J. Vela, Chem. Mater. 28, 6848 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thad Druffel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankireddy, K., Lavery, B.W. & Druffel, T. Atmospheric Processing of Perovskite Solar Cells Using Intense Pulsed Light Sintering. J. Electron. Mater. 47, 1285–1292 (2018). https://doi.org/10.1007/s11664-017-5893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5893-y

Keywords

Navigation