Skip to main content
Log in

Strong Visible Light Photocatalytic Activity of Magnetically Recyclable Sol–Gel-Synthesized ZnFe2O4 for Rhodamine B Degradation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Visible light-responsive ZnFe2O4 photocatalyst with a spinel structure was synthesized via a sol-gel method. The visible light photocatalysis of ZnFe2O4 was investigated by decomposing Rhodamine B (RhB) solution. Under ∼30 min of visible light irradiation, the decomposition ratio of RhB is up to ∼97.4%. The excellent photocatalytic performance of ZnFe2O4 photocatalyst is attributed to the high effective oxidation–reduction reaction caused by light irradiation excitation. With the increase of decomposition time, the wavelength of the maximum absorption peak of RhB solutions shifts from 557 nm to 498 nm (“blue shift”), which is because of the N-deethylation and cleavage of the conjugated chromophore structure of RhB. ZnFe2O4 photocatalyst also exhibits a weak ferromagnetism performance. The decomposition ratio of RhB for the magnetically recycled ZnFe2O4 is ∼94.6%. Strong visible light photocatalysis and convenience of magnetic recycling make ZnFe2O4 promising for photocatalytic applications in dye wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sundararajan, L.J. Kennedy, P. Nithya, J.J. Vijaya, and M. Bououdina, J. Phys. Chem. Solids 108, 61 (2017).

    Article  Google Scholar 

  2. H. You, Y. Jia, Z. Wu, X. Xu, W. Qian, Y. Xia, and M. Ismail, Electrochem. Commun. 79, 55 (2017).

    Article  Google Scholar 

  3. G. Crini, Bioresour. Technol. 97, 1061 (2006).

    Article  Google Scholar 

  4. Y. Xia, Y. Jia, W. Qian, X. Xu, Z. Wu, Z. Han, Y. Hong, H. You, M. Ismail, G. Bai, and L. Wang, Metals 7, 122 (2017).

    Article  Google Scholar 

  5. U.I. Gayaa and A.H. Abdullah, J. Photochem. Photobiol. C 9, 1 (2008).

    Article  Google Scholar 

  6. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, and W. Gernjak, Catal. Today 147, 1 (2009).

    Article  Google Scholar 

  7. A. Fujishima, Nature 238, 37 (1972).

    Article  Google Scholar 

  8. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).

    Article  Google Scholar 

  9. A. Nakaruk, D. Ragazzon, and C.C. Sorrell, Thin Solid Films 518, 3735 (2010).

    Article  Google Scholar 

  10. S. Rehman, R. Ullah, A.M. Butt, and N.D. Gohar, J. Hazard. Mater. 170, 560 (2009).

    Article  Google Scholar 

  11. M.R. Hoffman, S.T. Martin, W.Y. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  Google Scholar 

  12. X. Chen, S. Shen, L. Guo, and S.S. Mao, Chem. Rev. 110, 6503 (2010).

    Article  Google Scholar 

  13. S. Li, Y. Lin, B. Zhang, C. Nan, and Y. Wang, J. Appl. Phys. 105, 056105 (2009).

    Article  Google Scholar 

  14. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, J. Am. Chem. Soc. 132, 17343 (2010).

    Article  Google Scholar 

  15. R. Dom, R. Subasri, K. Radha, and P.H. Borse, Solid State Commun. 151, 470 (2011).

    Article  Google Scholar 

  16. Y. Jia, H. Luo, S. Or, Y. Wang, and H.L.W. Chan, J. Appl. Phys. 105, 124109 (2009).

    Article  Google Scholar 

  17. C. Tan, G. Zhu, M. Hojamberdiev, C. Xu, J. Liang, P. Luo, and Y. Liu, J. Clust. Sci. 24, 1115 (2013).

    Article  Google Scholar 

  18. B. Tian, T. Wang, R. Dong, S. Bao, F. Yang, and J. Zhang, Appl. Catal. B 147, 22 (2014).

    Article  Google Scholar 

  19. X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, and G. Chen, Chemosphere 82, 581 (2011).

    Article  Google Scholar 

  20. X. Xu, Z. Wu, Y. Jia, W. Li, Y. Liu, Y. Zhang, and A. Xue, J. Nanomater. 2015, 613565 (2015).

    Google Scholar 

  21. M. Jean and V. Nachbaur, J. Alloys Compd. 454, 432 (2008).

    Article  Google Scholar 

  22. A.S. Singh, U.B. Patil, and J.M. Nagarkar, Catal. Commun. 35, 11 (2013).

    Article  Google Scholar 

  23. A. Manikandan, L.J. Kennedy, M. Bououdina, and J.J. Vijaya, J. Magn. Magn. Mater. 349, 249 (2014).

    Article  Google Scholar 

  24. S.A. Oliver, Phys. Rev. B 60, 3400 (1999).

    Article  Google Scholar 

  25. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, and A. Ghasemi, J. Phys. Chem. Solids 71, 1669 (2010).

    Article  Google Scholar 

  26. Y. Jia, Z. Zhou, Y. Wei, Z. Wu, J. Chen, Y. Zhang, and Y. Liu, J. Appl. Phys. 114, 213903 (2013).

    Article  Google Scholar 

  27. Y. Jia, Z. Zhou, Y. Wei, Z. Wu, H. Wang, J. Chen, Y. Zhang, and Y. Liu, Smart Mater. Struct. 22, 125014 (2013).

    Article  Google Scholar 

  28. G. Centi, S. Perathoner, T. Torre, and M.G. Verduna, Catal. Today 55, 61 (2000).

    Article  Google Scholar 

  29. S. Sun, W. Wang, L. Zhong, and M. Shang, J. Phys. Chem. C 113, 12826 (2009).

    Article  Google Scholar 

  30. W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, and Y. She, Environ. Sci. Techonol. 44, 1786 (2010).

    Article  Google Scholar 

  31. Y.F. Li and Z.P. Liu, J. Am. Chem. Soc. 133, 15743 (2011).

    Article  Google Scholar 

  32. A. Shanmugavani, R. Kalai Selvan, S. Layek, and C. Sanjeeviraja, J. Magn. Magn. Mater. 354, 363 (2014).

    Article  Google Scholar 

  33. W. Qian, Z. Wu, Y. Jia, Y. Hong, X. Xu, H. You, Y. Zheng, and Y. Xia, Electrochem. Commun. 81, 124 (2017).

    Article  Google Scholar 

  34. J. Wu, W. Mao, Z. Wu, X. Xu, H. You, A. Xue, and Y. Jia, Nanoscale 8, 7343 (2016).

    Article  Google Scholar 

  35. H. Lin, Z. Wu, Y. Jia, W. Li, R. Zheng, and H. Luo, Appl. Phys. Lett. 104, 162907 (2014).

    Article  Google Scholar 

  36. S. Horikoshi, A. Saitou, H. Hidaka, and N. Serpone, Environ. Sci. Technol. 37, 5813 (2003).

    Article  Google Scholar 

  37. Q. Wang, C. Chen, D. Zhao, W. Ma, and J. Zhao, Langmuir 24, 7338 (2008).

    Article  Google Scholar 

  38. H. Park and W. Choi, J. Phys. Chem. B 109, 11667 (2005).

    Article  Google Scholar 

  39. X. Hu, T. Mohamood, W. Ma, C. Chen, and J. Zhao, J. Phys. Chem. B 110, 26012 (2006).

    Article  Google Scholar 

  40. C. Chen, W. Zhao, P. Lei, J. Zhao, and N. Serpone, Chem Eur. J. 10, 1956 (2004).

    Article  Google Scholar 

  41. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, and Y. Ait-Ichou, J. Photochem. Photobiol. A 195, 346 (2008).

    Article  Google Scholar 

  42. H. You, Z. Wu, Y. Jia, X. Xu, Y. Xia, Z. Han, and Y. Wang, Chemosphere 183, 528 (2017).

    Article  Google Scholar 

  43. P. Chen, Y. Zhang, F. Zhao, H. Gao, X. Chen, and Z. An, Mater. Charact. 114, 243 (2016).

    Article  Google Scholar 

  44. M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, and T. Hyeon, Angew. Chem. Int. Ed. 46, 7039 (2007).

    Article  Google Scholar 

  45. M. Wang, Y. Ma, X. Sun, B. Geng, M. Wu, G. Zheng, and Z. Dai, Appl. Surf. Sci. 392, 1078 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Xiao, L., Jia, Y. et al. Strong Visible Light Photocatalytic Activity of Magnetically Recyclable Sol–Gel-Synthesized ZnFe2O4 for Rhodamine B Degradation. J. Electron. Mater. 47, 536–541 (2018). https://doi.org/10.1007/s11664-017-5810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5810-4

Keywords

Navigation