Skip to main content
Log in

Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Amorphous titanium nitride (TiN) thin films have been prepared on silicon (Si) and glass substrates by direct-current (DC) reactive magnetron sputtering with a supported discharge (triode). Nitrogen gas (N2) at partial pressure of 0.3 Pa, 0.4 Pa, 0.5 Pa, and 0.6 Pa was used to prepare the TiN thin films, maintaining total pressure of argon and N2 of about 0.7 Pa. The chemical, microstructural, optical, and electrical properties of the TiN thin films were systematically studied. Presence of different phases of Ti with nitrogen (N), oxygen (O2), and carbon (C) elements was revealed by x-ray photoelectron spectroscopy characterization. Increase in the nitrogen pressure from 0.3 Pa to 0.6 Pa reduced the optical bandgap of the TiN thin film from 2.9 eV to 2.7 eV. Photoluminescence study showed that TiN thin film deposited at N2 partial pressure of 0.3 Pa exhibited three shoulder peaks at 330 nm, 335 nm, and 340 nm, which disappeared when the sample was deposited with N2 partial pressure of 0.6 Pa. Increase in the nitrogen content decreased the electrical resistivity of the TiN thin film from 3200 μΩ cm to 1800 μΩ cm. Atomic force microscopy studies of the TiN thin films deposited with N2 partial pressure of 0.6 Pa showed a uniform surface pattern associated with accumulation of fine grains. The results and advantages of this method of preparing TiN thin films are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Martinez, V. Shutthanandan, S. Thevuthasan, J.F. Chessa, and C.V. Ramana, Ceram. Int. 40, 5757 (2014).

    Article  Google Scholar 

  2. A. Emmanuel, G.A. Osinkolu, A.Y. Fasasi, D.A. Pelemo, and E.I. Obiajunwa, J Mater. Sci. Mater. Electron. 27, 335 (2016).

    Article  Google Scholar 

  3. F. Battegay and F. Hodaj, J Mater. Sci. Mater. Electron. 27, 1679 (2016).

    Article  Google Scholar 

  4. B. Subramanian, R. Ananthakumar, V.S. Vidhya, and M. Jayachandran, Mater. Sci. Eng. 176, 1 (2011).

    Article  Google Scholar 

  5. N. Arshi, J. Lu, Y.K. Joo, C.G. Lee, J.H. Yoon, and F. Ahmed, J Mater. Sci. Mater. Electron. 24, 1194 (2013).

    Article  Google Scholar 

  6. X. Lin, G. Zhao, W. Liqing, G. Duan, and G. Han, J. Alloys Compd. 502, 195 (2010).

    Article  Google Scholar 

  7. N. White, A.L. Campbell, J.T. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C.V. Raman, Appl. Surf. Sci. 292, 74 (2014).

    Article  Google Scholar 

  8. K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, and M. Ohnishi, J. Phys. D 37, 1095 (2004).

    Article  Google Scholar 

  9. S. Shayestehaminzadeh, T.K. Tryggvason, F. Magnus, S. Olafsson, and J.T. Gudmundsson, Thin Solid Films 549, 199 (2013).

    Article  Google Scholar 

  10. N. Madaoui, N. Saoula, B. Zaid, D. Saidi, and A. Si Ahmed, Appl. Surf. Sci. 312, 134 (2014).

    Article  Google Scholar 

  11. Y.-K. Lee, J.-Y. Kim, Y.-K. Lee, M.-S. Lee, D.-K. Kim, D.-Y. Jin, T.-H. Namc, H.-J. Ahn, and D.-K. Park, J. Cryst. Growth 234, 498 (2002).

    Article  Google Scholar 

  12. D.M. Devia, E. Restrepo-Parra, P.J. Arango, A.P. Tschiptschin, and J.M. Velez, Appl. Surf. Sci. 257, 6181 (2011).

    Article  Google Scholar 

  13. D.R. Irala, L.C. Fontana, J.C. Sagas, and H.S. Maciel, Surf. Coat. Tech. 240, 154 (2014).

    Article  Google Scholar 

  14. A. Kavitha, R. Kannan, P. Sreedhara Reddy, and S. Rajashabala, J Mater. Sci. Mater. Electron. 27, 10427 (2016).

    Article  Google Scholar 

  15. P. Saikia and B. Kakati, J. Vac. Sci. Technol., A 31, 061307 (2013).

    Article  Google Scholar 

  16. M.S.R.N. Kiran, M. Ghanashyam Krishna, and K.A. Padmanabhan, Appl. Surf. Sci. 255, 1934 (2008).

    Article  Google Scholar 

  17. K. Vasu, M. Ghanashyam Krishna, and K.A. Padmanabhan, Appl. Surf. Sci. 257, 3069 (2011).

    Article  Google Scholar 

  18. H.Z. Wu, T.C. Chou, A. Mishra, and S.C. Gujrathi, Thin Solid Films 191, 55 (1990).

    Article  Google Scholar 

  19. S. Niyomsoan, W. Grant, D.L. Olson, and B. Mishra, Thin Solid Films 415, 187 (2002).

    Article  Google Scholar 

  20. P. LeClair, G.P. Berera, and J.S. Moodera, Thin Solid Films 376, 9 (2000).

    Article  Google Scholar 

  21. P. Saikia, A. Joseph, R. Rane, B.K. Saikia, and S. Mukherjee, J. Theor. Appl. Phys. 7, 66 (2013).

    Article  Google Scholar 

  22. S. Omveer, R.P. Dahiya, H.K. Malik, P. Kumar, and V. Singh, Appl. Sci. Lett. 2, 37 (2016).

    Article  Google Scholar 

  23. S.O.H. Yatt, B.S. Chao, and H. Yamauchi, J. Mater. Sci.: Mater. Electron. 3, 41 (1992).

    Google Scholar 

  24. N.K. Ponon, D.J. Appleby, E. Arac, P.J. King, S. Ganti, K.S. Kwa, and A. O’Neill, Thin Solid Films 578, 31 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Kavitha or R. Kannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, A., Kannan, R., Gunasekhar, K.R. et al. Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge. J. Electron. Mater. 46, 5773–5780 (2017). https://doi.org/10.1007/s11664-017-5608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5608-4

Keywords

Navigation