Skip to main content
Log in

Electromigration Critical Product to Measure Effect of Underfill Material in Suppressing Bi Segregation in Sn-58Bi Solder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recently, we detected length-dependent electromigration (EM) behavior in Sn-58Bi (SB) solder and revealed the existence of Bi back-flow, which retards EM-induced Bi segregation and is dependent on solder length. The cause of the back-flow is attributed to an oxide layer formed on the SB solder. At present, underfill (UF) material is commonly used in flip-chip packaging as filler between chip and substrate to surround solder bumps. In this study, we quantitatively investigated the effect of UF material as a passivation layer on EM in SB solder strips. EM tests on SB solder strips with length of 50 μm, 100 μm, and 150 μm were conducted simultaneously. Some samples were coated with commercial thermosetting epoxy UF material, which acted as a passivation layer on the Cu–SB–Cu interconnections. The value of the critical product for SB solder was estimated to be 38 A/cm to 43 A/cm at 353 K to 373 K without UF coating and 59 A/cm at 373 K with UF coating. The UF material acting as a passivation layer suppressed EM-induced Bi segregation and increased the threshold current density by 37% to 55%. However, at very high current density, this effect became very slight. In addition, Bi atoms can diffuse to the anode side through the Sn phase, hence addition of microelements to the Sn phase to form obstacles, such as intermetallic compounds, may retard Bi segregation in SB solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.L. Yang and J.K. Shang, J. Electron. Mater. 34, 1363 (2005).

    Article  Google Scholar 

  2. C.-M. Chen, L.T. Chen, and Y.-S. Lin, J. Electron. Mater. 36, 168 (2007).

    Article  Google Scholar 

  3. X. Gu, D. Yang, Y.C. Chan, and B.Y. Wu, J. Mater. Res. 23, 2591 (2008).

    Article  Google Scholar 

  4. X. Zhao, M. Saka, M. Muraoka, M. Yamashita, and H. Hokazono, J. Electron. Mater. 43, 4179 (2014).

    Article  Google Scholar 

  5. P. Su, S. Rzepka, M. Korhonen, and C.Y. Li, J. Electron. Mater. 28, 1017 (1999).

    Article  Google Scholar 

  6. I. Dutta, A. Gopinath, and C. Marshall, J. Electron. Mater. 31, 253 (2002).

    Article  Google Scholar 

  7. X. Zhao, M. Muraoka, and M. Saka, J. Electron. Mater. 46, 1287 (2017).

    Article  Google Scholar 

  8. C.C. Wei and C.Y. Liu, J. Mater. Res. 20, 2072 (2005).

    Article  Google Scholar 

  9. Y.T. Huang, H.H. Hsu, and A.T. Wu, J. Appl. Phys. 115, 034904 (2014).

    Article  Google Scholar 

  10. F. Ouyang, K. Chen, K.N. Tu, and Y. Lai, Appl. Phys. Lett. 91, 231919 (2007).

    Article  Google Scholar 

  11. I.A. Blech, J. Appl. Phys. 47, 1203 (1976).

    Article  Google Scholar 

  12. J.R. Lloyd and P.M. Smith, J. Vac. Sci. Technol. A 1, 455 (1983).

    Article  Google Scholar 

  13. C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, and A.K. Stamper, Appl. Phys. Lett. 81, 1782 (2002).

    Article  Google Scholar 

  14. K. Sasagawa, M. Hasegawa, M. Saka, and H. Abé, J. Appl. Phys. 91, 1882 (2002).

    Article  Google Scholar 

  15. Y. Kimura, H. Ikadai, T. Nakakura, and M. Saka, Mater. Lett. 184, 219 (2016).

    Article  Google Scholar 

  16. K. Yamanaka, T. Ooyoshi, and T. Nejime, J. Alloys Compd. 481, 659 (2009).

    Article  Google Scholar 

  17. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  Google Scholar 

  18. M.A. Korhonen, P. Børgesen, K.N. Tu, and C.-Y. Li, J. Appl. Phys. 73, 3790 (1993).

    Article  Google Scholar 

  19. S.-W. Chen, C.-M. Chen, and W.-C. Liu, J. Electron. Mater. 27, 1193 (1998).

    Article  Google Scholar 

  20. C.-M. Chen and S.-W. Chen, J. Appl. Phys. 90, 1208 (2001).

    Article  Google Scholar 

  21. H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005).

    Article  Google Scholar 

  22. L.D. Chen, M.L. Huang, and S.M. Zhou, J. Alloys Compd. 504, 535 (2010).

    Article  Google Scholar 

  23. C.-M. Chen, C.-C. Huang, C.-N. Liao, and K.-M. Liou, J. Electron. Mater. 36, 760 (2007).

    Article  Google Scholar 

  24. C.-M. Chen and C.-C. Huang, J. Alloys Compd. 461, 235 (2008).

    Article  Google Scholar 

  25. M.S. Lee, C.M. Liu, and C.R. Kao, J. Electron. Mater. 28, 57 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Masumi Saka at Tohoku University for valuable discussion. This work was supported by JSPS KAKENHI Grant Nos. JP15K17931, JP26289001, and JP15H03887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Takaya, S. & Muraoka, M. Electromigration Critical Product to Measure Effect of Underfill Material in Suppressing Bi Segregation in Sn-58Bi Solder. J. Electron. Mater. 46, 4999–5006 (2017). https://doi.org/10.1007/s11664-017-5507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5507-8

Keywords

Navigation