Skip to main content
Log in

Synthesis of ZnO Hexagonal Micro Discs on Glass Substrates Using the Spray Pyrolysis Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) is an important transparent conducting oxide of potential use in solar cells, electronics, photoelectronics, and sensors. In this work ZnO micro discs were synthesized in thin film form on glass substrates using the low cost spray pyrolysis method. The films were prepared from a precursor solution of ZnCl2 in distilled water at a substrate temperature of 300 ± 5°C. The as-synthesized samples were analyzed with x-ray diffraction, scanning electron microscopy, and x-ray energy dispersive spectroscopy (EDS). The morphology of the films showed randomly distributed micro discs of hexagonal shape. The EDS reports showed that the films contained Cl and Fe. Size analysis was performed using ImageJ software, where the average diameter was found to be 4.8 ± 0.9 μm, and the average thickness was found to be 254 ± 43 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Feng, A. Liu, Y. Ma, M. Liu, and B. Man, Phys. E 42, 1928 (2010).

    Article  Google Scholar 

  2. A. Umar, Y.K. Park, Y.B. Hahn, and A. Al-Hajry, Int. J. Nanomanuf. 4, 34 (2009).

    Article  Google Scholar 

  3. F. Li, Y. Ding, P. Gao, X. Xin, and Z.L. Wang, Angew. Chem. 116, 5350 (2004).

    Article  Google Scholar 

  4. F. Li, J. He, W. Zhou, and J.B. Wiley, J. Am. Chem. Soc. 125, 16166 (2003).

    Article  Google Scholar 

  5. F. Li, L. Xu, W.L. Zhou, J. He, R.H. Baughman, A.A. Zakhidov, and J.B. Wiley, Adv. Mater. 14, 1528 (2002).

    Article  Google Scholar 

  6. F. Khan, S.-H. Baek, and J.H. Kim, J. Alloy. Compd. 682, 232 (2016).

    Article  Google Scholar 

  7. T. Cun, C. Dong, and Q. Huan, Appl. Surf. Sci. 384, 73 (2016).

    Article  Google Scholar 

  8. C. He, T. Sasaki, Y. Shimizu, and N. Koshizaki, Appl. Surf. Sci. 254, 2196 (2008).

    Article  Google Scholar 

  9. X.M. Fan, J.S. Lian, Z.X. Guo, and H.J. Lu, Appl. Surf. Sci. 239, 176 (2005).

    Article  Google Scholar 

  10. T.S. Ko, S. Yang, H.C. Hsu, C.P. Chu, H.F. Lin, S.C. Liao, T.C. Lu, H.C. Kuo, W.F. Hsieh, and S.C. Wang, Mater. Sci. Eng., B 134, 54 (2006).

    Article  Google Scholar 

  11. M. Pal, S. Bera, S. Sarkar, and S. Jana, RSC Adv. 4, 11552 (2014).

    Article  Google Scholar 

  12. K. Vafaee and M.S. Ghamsari, Mater. Lett. 61, 3265 (2007).

    Article  Google Scholar 

  13. D.H. Zhang, Z.Y. Xue, and Q.P. Wang, J. Phys. D Appl. Phys. 35, 2837 (2002).

    Article  Google Scholar 

  14. M. Wang, J. Yi, S. Yang, Z. Cao, X. Huang, Y. Li, H. Li, and J. Zhong, Appl. Surf. Sci. 382, 217 (2016).

    Article  Google Scholar 

  15. B.H. Kong and H.K. Cho, J. Cryst. Growth 289, 370 (2006).

    Article  Google Scholar 

  16. M. Breedon, M.B. Rahmani, S.H. Keshmiri, W. Wlodarski, and K. Kalantarzadeh, Mater. Lett. 64, 291 (2010).

    Article  Google Scholar 

  17. S.J. Ikhmayies, J. Electron. Mater. 45, 3964 (2016).

    Article  Google Scholar 

  18. S.J. Ikhmayies, N.M.A. El-Haija, and R.N. Ahmad-Bitar, J. Semicond. 36, 033005 (2014).

    Article  Google Scholar 

  19. S.J. Ikhmayies, N.M.A. El-Haija, and R.N. Ahmad-Bitar, Phys. Scr. 81, 015703 (2010).

    Article  Google Scholar 

  20. S.J. Ikhmayies, N.M.A. El-Haija, and R.N. Ahmad-Bitar, FDMP 6, 165 (2010).

    Google Scholar 

  21. S.J. Ikhmayies, N.M.A. El-Haija, and R.N. Ahmad-Bitar, FDMP 6, 219 (2010).

    Google Scholar 

  22. L. Zhang, J. Zhao, J. Zheng, L. Li, and Z. Zhu, Sens. Actuator B-Chem. 158, 144 (2011).

    Article  Google Scholar 

  23. K. Nomenyo, A.-S. Gadallah, S. Kostcheev, D.J. Rogers, and G. Lérondel, Appl. Phys. Lett. 104, 181104 (2014).

    Article  Google Scholar 

  24. A. Smith and R. Rodriguez-Clemente, Thin Solid Films 345, 192 (1999).

    Article  Google Scholar 

  25. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).

    Article  Google Scholar 

  26. J. Schindelin, C.T. Rueden, M.C. Hiner, and K.W. Eliceiri, Mol. Reprod. Dev. 82, 518–529 (2015).

    Article  Google Scholar 

  27. P.X. Gao and Z.L. Wang, J. Phys. Chem. B. 108, 7534 (2004).

    Article  Google Scholar 

  28. E. Arca, K. Fleischer, and I.V. Shvets, J. Phys. Chem. C 113, 21074 (2009).

    Article  Google Scholar 

  29. N.S. Portillo-Vélez, M. Bizarro, J. Nanomater. 2016, 5981562 (2016). doi:10.1155/2016/5981562.

  30. U. Ahmad and Y.B. Hahn, Nanotechnology 17, 2174 (2006).

    Article  Google Scholar 

  31. R. Yousefi, A.K. Zak, and M.R. Mahmoudian, J. Solid State Chem. 184, 2678 (2011).

    Article  Google Scholar 

  32. D. Shao, J. Gao, G. Xin, Y. Wang, L. Li, J. Shi, J. Lian, N. Koratkar, and S. Sawyer, Small 11, 4785 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadia J. Ikhmayies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikhmayies, S.J., Zbib, M.B. Synthesis of ZnO Hexagonal Micro Discs on Glass Substrates Using the Spray Pyrolysis Technique. J. Electron. Mater. 46, 3982–3986 (2017). https://doi.org/10.1007/s11664-017-5495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5495-8

Keywords

Navigation