Skip to main content
Log in

Study on Thermoelectric Properties of Polycrystalline SnSe by Ge Doping

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

There is a strong motivation for investigating polycrystalline tin selenide (SnSe) as a high-performance thermoelectric material, since excellent performance (ZT ∼ 2.6) was observed in its single crystal. However, there is a large discrepant thermoelectric performance between single crystalline and polycrystalline SnSe. In this paper, the thermoelectric properties of polycrystalline Sn1−x Ge x Se were investigated, since forming a solid solution is a potential way to optimize thermoelectric performance. Our study shows that the introduction of Ge has a mild effect on the reduction of thermal conductivity, while the power factor is significantly deteriorated (1.87 μW cm−1 K−2 @823 K for the Sn0.92Ge0.08Se), owing to the reduced carrier concentration (0.66 × 1017 cm−3). The peak ZT of the prepared materials is 0.6 for Sn0.96Ge0.04Se at 823 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Kanatzidis, MRS Bull. 40, 687 (2015).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  4. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  5. C. Chen, H. Wang, Y. Chen, T. Day, and J. Snyder, J. Mater. Chem. A 2014, 11171 (2014).

    Article  Google Scholar 

  6. S. Sassi, C. Candol, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, and B. Lenoir, Appl. Phys. Lett. 104, 212105 (2014).

    Article  Google Scholar 

  7. Y.L. Li, X. Shi, D.D. Ren, J.K. Chen, and L.D. Chen, Energies 8, 6275 (2015).

    Article  Google Scholar 

  8. T.R. Wei, C.F. Wu, X. Zhang, Q. Tan, L. Sun, Y. Pan, and J.F. Li, Phys. Chem. Chem. Phys. 17, 30102 (2015).

    Article  Google Scholar 

  9. Y.-M. Han, J. Zhao, M. Zhou, X.-X. Jiang, H.-Q. Leng, and L.-F. Li, J. Mater. Chem. A 3, 4555 (2015).

    Article  Google Scholar 

  10. N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, and A. Dhar, J. Alloy. Compd. 668, 152 (2016).

    Article  Google Scholar 

  11. Y. Fu, J. Xu, G.Q. Liu, J. Yang, X. Tan, Z. Liu, H. Qin, H. Shao, H. Jiang, B. Liang, and J. Jiang, J. Mater. Chem. C 4, 1201 (2016).

    Article  Google Scholar 

  12. S.R. Popuri, M. Pollet, R. Decourt, F.D. Morrison, N.S. Bennett, and J.W.G. Bos, J. Mater. Chem. C 4, 1685 (2016).

    Article  Google Scholar 

  13. A.F. Ioffe, S.V. Airepetyants, A.V. Ioffe, N.V. Kolomoets, and L.S. Stil’bans, Dokl. Akad. Nauk SSSR 106, 981 (1956).

    Google Scholar 

  14. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D. Cuff, M. Tang, and M. Dresselhaus, Nano Lett. 8, 4670 (2008).

    Article  Google Scholar 

  15. X. Wang, H. Lee, Y. Lan, G. Zhu, G. Joshi, D. Wang, J. Yang, A. Muto, M. Tang, and J. Klatsky, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  16. Q. Zhang, J. He, T. Zhu, S. Zhang, X. Zhao, and T. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  17. S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.P. Fleurial, J. Mater. Chem. 21, 12259 (2011).

    Article  Google Scholar 

  18. X. Yan, B. Poudel, Y. Ma, W. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. Ren, Nano Lett. 10, 3373 (2010).

    Article  Google Scholar 

  19. Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. Jiang, and G. Xu, J. Mater. Chem. A 2, 8512 (2014).

    Article  Google Scholar 

  20. C. Yu, T. Zhu, R. Shi, Y. Zhang, X. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  21. J.J. Buckley, F.A. Rabuffetti, H.L. Hinton, and R.L. Brutchey, Chem. Mater. 24, 3514 (2012).

    Article  Google Scholar 

  22. G. Ding, G. Gao, and K. Yao, Sci. Rep. 5, 9567 (2015).

    Article  Google Scholar 

  23. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Nos. 11304327, 11404348, 11404350, and 11234012), Ningbo Municipal Natural Science Foundation (No. 2014A610011), Ningbo Science and Technology Innovation Team (Nos. 2014B82004), and the Zhejiang Provincial Science Fund for Distinguished Young Scholars (LR16E020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Liang or Jun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Xu, J., Liu, GQ. et al. Study on Thermoelectric Properties of Polycrystalline SnSe by Ge Doping. J. Electron. Mater. 46, 3182–3186 (2017). https://doi.org/10.1007/s11664-017-5404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5404-1

Keywords

Navigation