Skip to main content
Log in

Iron Oxide Nanospheres and Nanocubes for Magnetic Hyperthermia Therapy: A Comparative Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Improving the heating capacity of magnetic nanoparticles (MNPs) for hyperthermia therapy is an important but challenging task. Through a comparative study of the inductive heating properties of spherical and cubic Fe3O4 MNPs with two distinct average volumes (∼7000 nm3 and 80,000 nm3), we demonstrate that, for small size (∼7000 nm3), the cubic MNPs heat better compared with the spherical MNPs. However, the opposite trend is observed for larger size (∼80,000 nm3). The improvement in heating efficiency in cubic small-sized MNPs (∼7000 nm3) can be attributed to enhanced anisotropy and the formation of chain-like aggregates, whereas the decrease of the heating efficiency in cubic large-sized MNPs (∼80,000 nm3) has been attributed to stronger aggregation of particles. Physical motion is shown to contribute more to the heating efficiency in case of spherical than cubic MNPs, when dispersed in water. These findings are of crucial importance in understanding the role of shape anisotropy and optimizing the heating response of magnetic nano-structures for advanced hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pradhan, J. Giri, G. Samanta, H.D. Sarma, K.P. Mishra, J. Bellare, R. Banerjee, and D. Bahadur, J. Biomed. Mater. Res. B Appl. Biomater. 81B, 12 (2007).

    Article  Google Scholar 

  2. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, J. Phys. Condens. Matter 18, S2919 (2006).

    Article  Google Scholar 

  3. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).

    Article  Google Scholar 

  4. R. Hergt, W. Andra, C.G. d’Ambly, I. Hilger, W.A. Kaiser, U. Richter, and H.G. Schmidt, IEEE Trans. Magn. 34, 3745 (1998).

    Article  Google Scholar 

  5. R. Hergt and S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007).

    Article  Google Scholar 

  6. R. Das, J. Alonso, Z.N. Porshokouh, V. Kalappattil, D. Torres, M.-H. Phan, E. Garaio, J.Á. García, J.L.S. Llamazares, and H. Srikanth, J. Phys. Chem. C 120, 10086 (2016).

    Article  Google Scholar 

  7. C.M. Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estradé, F. Peiró, Z. Saghi, P.A. Midgley, I.C. Leborán, D. Serantes, and D. Baldomir, Sci. Rep. 3, 1652 (2013).

    Article  Google Scholar 

  8. P. Guardia, R.D. Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M.G. Hernandez, F. Gazeau, L. Manna, and T. Pellegrino, ACS Nano 6, 3080 (2012).

    Article  Google Scholar 

  9. H. Khurshid, J. Alonso, Z. Nemati, M.H. Phan, P. Mukherjee, M.L. Fdez-Gubieda, J.M. Barandiaran, and H. Srikanth, J. Appl. Phys. 117, 17A337 (2015).

    Article  Google Scholar 

  10. Z. Nemati, J. Alonso, L.M. Martinez, H. Khurshid, E. Garaio, J.A. Garcia, M.H. Phan, and H. Srikanth, J. Phys. Chem. C 120, 8370 (2016).

    Article  Google Scholar 

  11. D.F. Coral, P.M. Zélis, M. Marciello, M.P.O. Morales, A. Craievich, F.H. Sánchez, and M.B.F. van Raap, Langmuir 32, 1201 (2016).

    Article  Google Scholar 

  12. J.P. Fortin, F. Gazeau, and C. Wilhelm, Eur. Biophys. 37, 223 (2008).

    Article  Google Scholar 

  13. H. Khurshid, W. Li, S. Chandra, M.H. Phan, G.C. Hadjipanayis, P. Mukherjee, and H. Srikanth, Nanoscale 5, 7942 (2013).

    Article  Google Scholar 

  14. S.H. Noh, W. Na, J.T. Jang, J.H. Lee, E.J. Lee, S.H. Moon, Y. Lim, J.S. Shin, and J. Cheon, Nano Lett. 12, 3716 (2012).

    Article  Google Scholar 

  15. G.F. Goya, T.S. Berquó, F.C. Fonseca, and M.P. Morales, J. Appl. Phys. 94, 3520 (2003).

    Article  Google Scholar 

  16. N.A. Usov and B.Y. Liubimov, J. Appl. Phys. 112, 023901 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Work was partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award # DE-FG02-07ER46438. H.S. acknowledges support from the Bizkaia Talent Program, Basque Country (Spain). J.A. acknowledges the financial support provided through a postdoctoral fellowship from the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Das or H. Srikanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, Z., Das, R., Alonso, J. et al. Iron Oxide Nanospheres and Nanocubes for Magnetic Hyperthermia Therapy: A Comparative Study. J. Electron. Mater. 46, 3764–3769 (2017). https://doi.org/10.1007/s11664-017-5347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5347-6

Keywords

Navigation