Skip to main content
Log in

Computer Simulations of Contributions of Néel and Brown Relaxation to Specific Loss Power of Magnetic Fluids in Hyperthermia

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the degree of the contribution of particular relaxation losses to the specific loss power are calculated for a number of magnetic fluids, including Fe3O4, CoFe2O4, MnFe2O4, FeCo, FePt and La0.7Sr0.3MnO3 nanoparticles in various viscosities. We found that the specific loss of every fluid studied increases linearly with particle saturation magnetization. The competition between Néel and Brownian relaxation contributions gives rise to a peak at a critical diameter in the plot of specific loss power versus diameter. The critical diameter does not change with saturation magnetization but monotonically decreases with increasing magnetic anisotropy. If particle diameter is smaller than 6–11 nm, the maximum loss power tends to diminish and the heating effect to switch off. According to how the materials respond to viscosity change, the hyperthermia materials can be classified into two groups. One is hard nanoparticles with high anisotropy of which the critical diameter decreases with viscosity and the specific loss power versus saturation magnetization rate decreases strongly. The other is soft nanoparticles with low anisotropy of which the properties are insensitive to the viscosity of the fluid. We discuss our simulated results in relation to recent experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Lu, A. Hui, E.L. Salabas, and F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007).

    Article  Google Scholar 

  2. N.T.K. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications (Boca Raton: CRC, 2012), pp. 215–242.

    Book  Google Scholar 

  3. Q.A. Pankhurst, N.T.K. Thanh, S.K. Jones, and J. Dobson, J. Phys. D Appl. Phys. 42, 224001 (2009).

    Article  Google Scholar 

  4. C.S.S.R. Kumar and F. Mohammad, Adv. Drug Deliv. Rev. 63, 789 (2011).

    Article  Google Scholar 

  5. I. Hilger and W.A. Kaiser, Nanomedicine 7, 1443 (2012).

    Article  Google Scholar 

  6. A.H. Habib, C.L. Ondeck, P. Chaudhary, M.R. Bockstaller, and M.E. McHenry, J. Appl. Phys. 103, 07A307 (2008).

    Article  Google Scholar 

  7. L.M. Lacroix, J. Carey, and M. Respaud, Rev. Sci. Instrum. 79, 093909 (2008).

    Article  Google Scholar 

  8. L.M. Lacroix, D. Ho, and S. Sun, Curr. Top. Med. Chem. 10, 1184 (2010).

    Article  Google Scholar 

  9. R. Epherre, E. Duguet, S. Mornet, E. Pollert, S. Louguet, S. Lecommandoux, C. Schatzcd, and G. Goglio, J. Mater. Chem. 21, 4393 (2011).

    Article  Google Scholar 

  10. D.H. Manh, P.H. Nam, N.V. Chien, P.T.B. Hoa, T.D. Lam, N.A. Tuan, P.Q. Thong, L.V. Hong, and N.X. Phuc, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035003 (2011).

    Article  Google Scholar 

  11. J.H. Lee, J.T. Jang, J.S. Choi, S.H. Moon, S.H. Noh, J.W. Kim, J.G. Kim, I.S. Kim, K.I. Park, and J. Cheon, Nat. Nanotechnol. 6, 418 (2011).

    Article  Google Scholar 

  12. S. Maenosono and S. Saita, IEEE Trans. Magn. 42, 1638 (2006).

    Article  Google Scholar 

  13. R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, J. Phys.: Condens. Matter 18, S2919 (2006).

    Google Scholar 

  14. H.C. Thoeny, M. Triantafyllou, F.D. Kerkhaeuser, J.M. Froehlich, D.W. Tshering, T. Binser, A. Fleischmann, P. Vermathen, and U.E. Studer, Eur. Urol. 55, 761 (2009).

    Article  Google Scholar 

  15. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).

    Article  Google Scholar 

  16. M. Jeun, Y.J. Kim, K.H. Park, S.H. Paek, and S. Bae, J. Nanosci. Nanotechnol. 13, 5719 (2013).

    Article  Google Scholar 

  17. D.H. Manh, D.K. Tung, D.N.H. Nam, L.V. Hong, P.T. Phong, and N.X. Phuc, IEEE Trans. Magn. 50, 2005104 (2014).

    Google Scholar 

  18. A.E. Deatsch and B.A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).

    Article  Google Scholar 

  19. O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, and A.G. Belous, Solid State Sci. 20, 115 (2013).

    Article  Google Scholar 

  20. J.-P. Fortin, C. Wilhelm, J. Servais, C. Menager, J.-C. Bacri, and F. Gazeau, J. Am. Chem. Soc. 129, 2628 (2007).

    Article  Google Scholar 

  21. S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, and V. Papaefthymiou, Phys. Rev. B 45, 9778 (1992).

    Article  Google Scholar 

  22. M. Thakur, K. De, S. Giri, A. Kotal, and T.K. Mandal, J. Phys.: Condens. Matter 18, 9093 (2006).

    Google Scholar 

  23. D.H. Manh, P.T. Phong, T.D. Thanh, D.N.H. Nam, L.V. Hong, and N.X. Phuc, J. Alloys Compd. 509, 1373 (2011).

    Article  Google Scholar 

  24. P.H. Linh, D.H. Manh, P.T. Phong, L.V. Hong, and N.X. Phuc, J. Supercond. Novel Magn. 27, 2111 (2014).

    Article  Google Scholar 

  25. D.A. Garanin and H. Kachkachi, Phys. Rev. Lett. 90, 065504 (2003).

    Article  Google Scholar 

  26. B.J. Hickey, M.A. Howson, D. Greig, and N. Wiser, Phys. Rev. B 53, 32 (1996).

    Article  Google Scholar 

  27. N.M. Ha, D.H. Manh, L.V. Hong, N.X. Phuc, and Y.D. Yao, J. Korean Phys. Soc. 2, 1447 (2008).

    Google Scholar 

  28. S. Purushotham and R.V. Ramanujan, J. Appl. Phys. 107, 114701 (2010).

    Article  Google Scholar 

  29. A. Candeo and F. Dughiero, IEEE Trans. Magn. 45, 1658 (2009).

    Article  Google Scholar 

  30. L. Rast and J.G. Harrison, Piers 6, 990 (2010).

    Google Scholar 

  31. R.V. Stigliano, F. Shubitidze, A.A. Petryk, J.A. Tate, and P.J. Hoopes, Proc. SPIE 8584, 858410 (2013).

    Article  Google Scholar 

  32. B. Mehdaoui, A. Meffre, and J. Carrey, Adv. Funct. Mater. 21, 4573 (2011).

    Article  Google Scholar 

  33. C.A. Sawyer, A.H. Habib, K. Miller, K.N. Collier, C.L. Ondeck, and M.E. McHenry, J. Appl. Phys. 105, 07B320 (2009).

    Article  Google Scholar 

  34. M. Pavel and A. Stancu, IEEE Trans. Magn. 45, 4825 (2009).

    Article  Google Scholar 

  35. R.Z. Xu, H. Yu, and Y. Zhang, IEEE Trans. Magn. 45, 3085 (2009).

    Article  Google Scholar 

  36. M. Salloum, R. Ma, and L. Zhu, Int. J. Hyperthermia 25, 309 (2009).

    Article  Google Scholar 

  37. J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge: Cambridge University Press, 2010), pp. 386–423.

    Book  Google Scholar 

  38. J.P. Fortin, F. Gazeau, C. Wilhelm, Eur. Biophys. J. 37, 223 (2008).

    Article  Google Scholar 

  39. L. Néel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pham Thanh Phong, Luu Huu Nguyen or In-Ja Lee.

Additional information

Luu Huu Nguyen and Nguyen Xuan Phuc contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phong, P.T., Nguyen, L.H., Manh, .H. et al. Computer Simulations of Contributions of Néel and Brown Relaxation to Specific Loss Power of Magnetic Fluids in Hyperthermia. J. Electron. Mater. 46, 2393–2405 (2017). https://doi.org/10.1007/s11664-017-5302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5302-6

Keywords

Navigation