Skip to main content
Log in

Cationic Effect on the Electrochemical Characteristics of the Hydrothermally Grown Manganese Dioxide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hydrothermal growth of manganese dioxide (MnO2) nanostructures was carried out on indium tin dioxide glass substrates at 95°C for 24 h to study the effect of cations such as K+, Li+, and Na+ on their properties. It was observed that presence of cations affected the MnO2 phase and morphology: amorphous MnO2 (no cations) showed columnar-like structure, ε-MnO2 (K+) presented nanowires, α-MnO2 (Na+) was composed of agglomerates of spherical nanoparticles, while β-MnO2 (Li+) consisted of spherical aggregates of nanoparticles. The different electrochemical performance depending on the structure is expected to be useful for application in Li-ion batteries. As-grown ε-MnO2 exhibited lower charge resistance and higher ionic diffusion rate, providing the electrode with enhanced specific discharge capacity of 910 mAh g−1 and capacity retention of 98% after 500 scans. Hence, K+ can support tunnel structures and stabilize the structure compared with the smaller cations Na+ and Li+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Su, S. Li, D. Wu, F. Zhang, H. Liang, P. Gao, C. Cheng, and X. Feng, ACS Nano 6, 8349 (2012).

    Article  Google Scholar 

  2. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

    Article  Google Scholar 

  3. M. Hu, X.L. Pang, and Z. Zhou, J. Power Sources 237, 229 (2013).

    Article  Google Scholar 

  4. C.H. Kim and B.-H. Kim, J. Power Sources 274, 512 (2015).

    Article  Google Scholar 

  5. S. Dai, Y. Xi, C. Hu, X. Yue, L. Cheng, and G. Wang, J. Power Sources 274, 477 (2015).

    Article  Google Scholar 

  6. X. Fang, X. Lu, X. Guo, Y. Mao, Y.S. Hu, J. Wang, Z. Wang, F. Wu, H.-K. Liu, and L. Chen, Electrochem. Commun. 12, 1520 (2010).

    Article  Google Scholar 

  7. T. Zhu, Z. He, G. Zhang, Y. Lu, C. Lin, Y. Chen, and H. Guo, J. Alloys Compd. 644, 186 (2015).

    Article  Google Scholar 

  8. M. Kundu, C.C.A. Ng, D.Y. Petrovykh, and L. Liu, Chem. Commun. 49, 8459 (2013).

    Article  Google Scholar 

  9. X. Wang and Y.D. Li, J. Am. Chem. Soc. 124, 2880 (2002).

    Article  Google Scholar 

  10. J.-H. Kim, T. Ayalasomayajula, V. Gona, and D. Choi, J. Power Sources 183, 366 (2008).

    Article  Google Scholar 

  11. Y.-S. Ding, X.-F. Shen, S. Gomez, H. Luo, M. Aindow, and S.L. Suib, Adv. Funct. Mater. 16, 549 (2006).

    Article  Google Scholar 

  12. H. Lai, J. Li, Z. Chen, Z. Huang, and A.C.S. Appl, Mater. Interfaces 4, 2325 (2012).

    Article  Google Scholar 

  13. L. Li, A.-R.O. Raji, and J.M. Tour, Adv. Mater. 25, 6298 (2013).

    Article  Google Scholar 

  14. J.-Y. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao, and Z. Chen, Nano Lett. 13, 5467 (2013).

    Article  Google Scholar 

  15. Y. Wang, P. Ding, and C. Wang, J. Alloys Compd. 654, 273 (2016).

    Article  Google Scholar 

  16. D. Vernardou, A. Kazas, M. Apostolopoulou, N. Katsarakis, and E. Koudoumas, Int. J. Thin Film Sci. Technol. 5, 121 (2016).

    Article  Google Scholar 

  17. X. Duan, J. Yang, H. Gao, J. Ma, L. Jiao, and W. Zheng, Cryst. Eng. Commun. 14, 4196 (2012).

    Article  Google Scholar 

  18. Z.K. Ghouri, M.S. Akhtar, A. Zahoor, N.A.M. Barakat, W. Han, M. Park, B. Pant, P.S. Saud, C.H. Lee, and H.Y. Kim, J. Alloys Compd. 642, 210 (2015).

    Article  Google Scholar 

  19. H.Z. Chi, S. Tian, X. Hu, H. Qin, and J. Xi, J. Alloys Compd. 587, 354 (2014).

    Article  Google Scholar 

  20. J. Luo, H.T. Zhu, H.M. Fan, J.K. Liang, H.L. Shi, G.H. Rao, J.B. Li, Z.M. Du, and Z.X. Shen, J. Phys. Chem. C 112, 12594 (2008).

    Article  Google Scholar 

  21. Z.Q. Li, Y. Ding, Y.J. Xiong, and Y. Xie, Cryst. Growth Des. 5, 1953 (2005).

    Article  Google Scholar 

  22. V. Subramanian, H.W. Zhu, R. Vajtai, P.M. Ajayan, and B.Q. Wei, J. Phys. Chem. B 109, 20207 (2005).

    Article  Google Scholar 

  23. M. Wei, Y. Konishi, H. Zhou, H. Sugihara, and H. Arakawa, Nanotechnology 16, 245 (2005).

    Article  Google Scholar 

  24. X.F. Shen, Y.S. Ding, J. Liu, J. Cai, K. Laubernds, R.P. Zerger, A. Vasiliev, M. Aindow, and S.L. Suib, Adv. Mater. 17, 805 (2005).

    Article  Google Scholar 

  25. D. Han, X. Jing, P. Xu, Y. Ding, and J. Liu, J. Solid State Chem. 218, 178 (2014).

    Article  Google Scholar 

  26. D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, and E. Koudoumas, J. Colloid Interface Sci. 424, 1 (2014).

    Article  Google Scholar 

  27. D. Vernardou, D. Louloudakis, E. Spanakis, N. Katsarakis, and E. Koudoumas, New J. Chem. 38, 1959 (2014).

    Article  Google Scholar 

  28. D. Louloudakis, D. Vernardou, E. Spanakis, N. Katsarakis, and E. Koudoumas, Surf. Coat. Technol. 230, 186 (2013).

    Article  Google Scholar 

  29. D. Vernardou, A. Sapountzis, E. Spanakis, G. Kenanakis, E. Koudoumas, and N. Katsarakis, J. Electrochem. Soc. 160, D6 (2013).

    Article  Google Scholar 

  30. R.B. Valim, M.C. Santos, M.R.V. Lanza, S.A.S. Machado, F.H.B. Lima, and M.L. Calegaro, Electrochim. Acta 85, 423 (2012).

    Article  Google Scholar 

  31. Y. Liu, H. Wang, Y. Zhu, X. Wang, X. Liu, H. Li, and Y. Qian, Solid State Commun. 149, 1514 (2009).

    Article  Google Scholar 

  32. N.C. Silva Vieira, E.G. Ramos Fernandes, A.A. Alencar de Queiroz, F.E. Gontijo Guimarães, and V. Zucolotto, Mater. Res. 16, 1156 (2013).

    Article  Google Scholar 

  33. H. Wang, F. Yin, B. Chen, and G. Li, J. Mater. Chem. A 3, 16168 (2015).

    Article  Google Scholar 

  34. T. Gao, H. Fjellvåg, and P. Norby, Anal. Chim. Acta 648, 235 (2009).

    Article  Google Scholar 

  35. M. Ocãna, J.V. Garcia-Ramos, and C. Serna, J. Am. Ceram. Soc. 75, 2010 (1992).

    Article  Google Scholar 

  36. J.E. Post, R.B. Von Dreele, and P.R. Buseck, Acta Crystallogr. B 38, 1056 (1982).

    Article  Google Scholar 

  37. J. Liu, V. Makwana, J. Cai, S.L. Suib, and M. Aindow, J. Phys. Chem. B 107, 9185 (2003).

    Article  Google Scholar 

  38. F.Y. Cheng, J.Z. Zhao, W. Song, C.S. Li, H. Ma, J. Chen, and P.W. Shen, Inorg. Chem. 45, 2038 (2006).

    Article  Google Scholar 

  39. X. Huang, D. Lv, H. Yue, A. Attia, and Y. Yang, Nanotechnology 19, 225606 (2008).

    Article  Google Scholar 

  40. D. Li, G. Du, J. Wang, Z. Guo, Z. Chen, and H. Liu, J. Chin. Chem. Soc. 59, 1211 (2012).

    Article  Google Scholar 

  41. W.N. Li, J.K. Yuan, X.F. Shen, S. Gomez-Mower, L.P. Xu, S. Sithambaram, M. Aindow, and S.L. Suib, Adv. Funct. Mater. 16, 1247 (2006).

    Article  Google Scholar 

  42. A. Yuan and Q. Zhang, Electrochem. Commun. 8, 1173 (2006).

    Article  Google Scholar 

  43. H. Wang, H. Yi, X. Chen, and X. Wang, J. Mater. Chem. A 2, 1165 (2014).

    Article  Google Scholar 

  44. Z. Jiao, X. Wei Sun, J. Wang, L. Ke, and H. Volkan Demir. J. Phys. D Appl. Phys. 43, 285501 (2010).

    Article  Google Scholar 

  45. A.W. Bott and W.R. Heineman, Curr. Sep. 4, 121 (2004).

    Google Scholar 

  46. F.C. Anson, Anal. Chem. 38, 54 (1966).

    Article  Google Scholar 

  47. J.P. Ni, W.C. Lu, L.M. Zhang, B.H. Yue, X.F. Shang, and Y. Lv, J. Phys. Chem. C 113, 54 (2009).

    Article  Google Scholar 

  48. L.L. Zhang, S. Li, J.T. Zhang, P.Z. Guo, J.T. Zheng, and X.S. Zhao, Chem. Mater. 22, 1195 (2010).

    Article  Google Scholar 

  49. X. Shang, X. Li, H. Yue, S. Xue, Z. Liu, X. Hou, and D. He, Mater. Lett. 57, 7 (2015).

    Article  Google Scholar 

  50. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, and M. Chesneau, J. Power Sources 101, 109 (2001).

    Article  Google Scholar 

  51. H. Li, L. Jiang, Q. Cheng, Y. He, V. Pavlinek, P. Saha, and C. Li, Electrochim. Acta 164, 252 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vernardou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernardou, D., Kazas, A., Apostolopoulou, M. et al. Cationic Effect on the Electrochemical Characteristics of the Hydrothermally Grown Manganese Dioxide. J. Electron. Mater. 46, 2232–2240 (2017). https://doi.org/10.1007/s11664-016-5163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5163-4

Keywords

Navigation