Skip to main content
Log in

Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys. 69, 2849 (1991).

    Article  Google Scholar 

  2. T. Ohta, J. Optoelectron. Adv. Mater. 3, 609 (2001).

    Google Scholar 

  3. A. Pirovano, A.L. Benvenuti, F. Pellizzer, and R. Bez, IEEE Trans. Electron Dev. 51, 452 (2004).

    Article  Google Scholar 

  4. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, and R.A.M. Wolters, Nat. Mater. 4, 347 (2005).

    Article  Google Scholar 

  5. H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, and K.E. Goodson, Proc. IEEE 98, 2201 (2010).

    Article  Google Scholar 

  6. M. Wuttig and N. Yamada, Nat. Mat. 6, 824 (2007).

    Article  Google Scholar 

  7. W.D. Song, L.P. Shi, X.S. Miao, and C.T. Chong, Adv. Mater. 20, 2394 (2008).

    Article  Google Scholar 

  8. F. Tong, J.H. Hao, Z.P. Chen, G.Y. Gao, and X.S. Miao, Appl. Phys. Lett. 99, 081908 (2011).

    Article  Google Scholar 

  9. F. Matsukura, Y. Tokura, and H. Ohno, Nat. Nanotechnol. 10, 209 (2015).

    Article  Google Scholar 

  10. J.S. Slonczewski, J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  Google Scholar 

  11. L. Berger, Phys. Rev. B 54, 9353–9358 (1996).

    Article  Google Scholar 

  12. M. Rodot, J. Lewis, H. Rodot, G. Villers, J. Cohen, and P. Mollard, J. Phys. Soc. Jpn. 21, 627 (1966).

    Google Scholar 

  13. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  14. D. Ding, K. Bai, W.D. Song, L.P. Shi, R. Zhao, R. Ji, M. Sullivan, and P. Wu, Phys. Rev. B 84, 214416 (2011).

    Article  Google Scholar 

  15. W. Zhang, I. Ronneberger, Y. Li, and R. Mazzarello, Adv. Mater. 24, 4387 (2012).

    Article  Google Scholar 

  16. K. Sato, H. Katayama-Yoshida, and J. Non-Cryst, Solids 358, 2377 (2012).

    Google Scholar 

  17. Y. Liu, S.K. Bose, and J. Kudrnovský, J. Appl. Phys. 112, 053902 (2012).

    Article  Google Scholar 

  18. W. Zhang, I. Ronneberger, Y. Li, and R. Mazzarello, Sci. Adv. Mater. 6, 1655 (2014).

    Article  Google Scholar 

  19. T. Fukushima, H. Katayama-Yoshida, K. Sato, H. Fujii, E. Rabel, R. Zeller, P.H. Dederichs, W. Zhang, and R. Mazzarello, Phys. Rev. B 90, 144417 (2014).

    Article  Google Scholar 

  20. A. Zunger, S. Lany, and H. Raebiger, Physics 3, 53 (2010).

    Article  Google Scholar 

  21. A. Stroppa, G. Kresse, and A. Continenza, Phys. Rev. B 83, 085201 (2011).

    Article  Google Scholar 

  22. J.O. Guillén, S. Lany, S.V. Barabash, and A. Zunger, Phys. Rev. B 75, 184421 (2007).

    Article  Google Scholar 

  23. D.M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).

    Article  Google Scholar 

  24. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, Nat. Mater. 7, 653 (2008).

    Article  Google Scholar 

  25. K.M. Rabe and J.D. Joannopoulos, Phys. Rev. B 36, 3319 (1987).

    Article  Google Scholar 

  26. T. Matsunaga and N. Yamada, Phys. Rev. B 69, 104111 (2004).

    Article  Google Scholar 

  27. T. Kaewmaraya, M. Ramzan, H. Lofas, and R. Ahuja, J. Appl. Phys. 113, 033510 (2013).

    Article  Google Scholar 

  28. S. Caravati, M. Bernasconi, T.D. Kühne, M. Krack, and M. Parrinello, J. Phys.: Condens. Matter 22, 399801 (2009).

    Google Scholar 

  29. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys.: Condens. Matter. 14, 2717 (2002).

    Google Scholar 

  30. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 567, 220 (2005).

    Google Scholar 

  31. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  Google Scholar 

  32. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Thin Solid Films 370, 258 (2000).

    Article  Google Scholar 

  33. J.W. Park, S.H. Eom, H. Lee, J.L.F. Da Silva, Y.S. Kang, T.Y. Lee, and Y.H. Khang, Phys. Rev. B 80, 115209 (2009).

    Article  Google Scholar 

  34. J.W. Park, S.H. Back, T.D. Kang, H. Lee, Y.S. Kang, T.-Y. Lee, D.S. Suh, K.J. Kim, C.K. Kim, Y.H. Khang, J.L.F. Da Silva, and S.H. Wei, Appl. Phys. Lett. 93, 021914 (2008).

    Article  Google Scholar 

  35. P.J. Stiles, L. Esaki, and W.E. Howard, in Proceedings of the Tenth International Conference on Lou-TemPeratgre Physics, Moscow (1966).

  36. L. Esaki, J. Phys. Soc. Japan Suppl. 21, 589 (1966).

    Google Scholar 

  37. R. Tsv, W.E. Howard, and L. Esaki, Phys. Rev. 172, 779 (1968).

    Article  Google Scholar 

  38. A.H. Edwards, A.C. Pineda, P.A. Schultz, M.G. Martin, A.P. Thompson, H.P. Hjalmarson, and C.J. Umrigar, Phys. Rev. B 73, 045210 (2006).

    Article  Google Scholar 

  39. F. Herman, R.L. Kortum, I.B. Ortenburger, and J.P. Van Dyke, J. Phys. Colloq. 29, C4–C62 (1968).

    Article  Google Scholar 

  40. Y.W. Tung and M.L. Cohen, Phys. Rev. 180, 823 (1969).

    Article  Google Scholar 

  41. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nat. Mater. 7, 972 (2008).

    Article  Google Scholar 

  42. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen, and R. Dronskowski, Nat. Mater. 6, 122 (2007).

    Article  Google Scholar 

  43. W. Zhang, A. Thiess, P. Zalden, R. Zeller, P.H. Dederichs, J.-Y. Raty, M. Wuttig, S. Blugel, and R. Mazzarello, Nat. Mater. 11, 952 (2012).

    Article  Google Scholar 

  44. P. Mahadevan and A. Zunger, Phys. Rev. B 69, 115211 (2004).

    Article  Google Scholar 

  45. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  Google Scholar 

  46. J. Szczytko, W. Bardyszewski, and A. Twardowski, Phys. Rev. B 64, 075306 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors H. Li and J. Pei thank China Postdoctoral Science Foundation and National Natural Science Foundation of China (No. 61475080), respectively, for financial support. H. Li thanks Tsinghua National Laboratory for Information Science and Technology for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Li or L. P. Shi.

Additional information

H. Li and J. Pei contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Pei, J. & Shi, L.P. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material. J. Electron. Mater. 45, 5158–5169 (2016). https://doi.org/10.1007/s11664-016-4746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4746-4

Keywords

Navigation