Skip to main content
Log in

Effect of the Yb3+ Concentration in Up-Conversion and Electrical Properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ho3+/Yb3+ co-doped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT-BT:Ho3+/Yb3+) ceramics were synthesized by solid-state reaction and characterized by x-ray diffraction (XRD), luminescent, dielectric, ferroelectric and piezoelectric measurements. The XRD diffraction data showed that all the ceramics were single phase with a perovskite structure. Bright green up-conversion (UC) emission bands (545 nm) and weak red UC emission bands (660 nm) corresponded to the transitions from (5F4, 5S2) → 5I8 and 4I5 → 5I8, respectively. Furthermore, optimized UC emission intensity was observed in the NBT-BT:0.005Ho3+/0.03Yb3+ samples. The thermal behavior of UC emission in the ceramics was also investigated and the maximum sensitivity based on fluorescence intensity ratio (FIR) technology was approximately 0.0042 K−1 at 100 K. Moreover, relatively good dielectric properties (ε = 4475) and ferroelectric properties (P r = 32 μ/cm2 and E c = 37 kV) were obtained in NBT-BT:0.005Ho3+/0.005Yb3+. As a multi-functional material, NBT-BT:Ho3+/Yb3+ ceramics may be useful in electro-optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M.S. Sanad, M.M.S. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, and K. Powers, J. Electron. Mater. 43, 3559 (2014).

    Article  Google Scholar 

  2. X. Sun, X. Sun, X. Li, J. He, and B. Wang, J. Electron. Mater. 43, 3534 (2014).

    Article  Google Scholar 

  3. T. Wei, Q.J. Zhou, C.Z. Zhao, Y.B. Lin, Y.L. Zou, Y. Li, and L.S. Zhang, Ceram. Int. 39, 7211 (2013).

    Article  Google Scholar 

  4. J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, and M. Bettinelli, Chem. Phys. Lett. 390, 403 (2004).

    Article  Google Scholar 

  5. G. Tomasz, B. Sangeetha, P. Dominika, and M. Węcławiak, J. Alloys Compd. 649, 606 (2015).

    Article  Google Scholar 

  6. P. Du, L.H. Luo, and J.S. Yu, J. Alloys Compd. 632, 73 (2015).

    Article  Google Scholar 

  7. A. Herabut and H. Safari, J. Am. Ceram. Soc. 80, 2954 (1997).

    Article  Google Scholar 

  8. C.T. Luo, W.W. Ge, Q.H. Zhang, J.F. Li, H.S. Luo, and D. Viehland, Appl. Phys. Lett. 101, 141912 (2012).

    Article  Google Scholar 

  9. X.M. Chen, H.Y. Ma, W.Y. Pan, M. Pang, P. Liu, and J.P. Zhou, J. Alloys Compd. 5, 1824 (2011).

    Article  Google Scholar 

  10. M.L. Liu, F.Y. Lei, N. Jiang, Q.J. Zheng, and D.M. Lin, Mater. Res. Bull. 74, 62 (2016).

    Article  Google Scholar 

  11. X.M. Chen, W.Y. Pan, and H.H. Tian, J. Alloys Compd. 5, 1824 (2011).

    Article  Google Scholar 

  12. L.R.E. De, P. Salas, H. Desirena, C. Angeles, and R.A. Rodriguez, Appl. Phys. Lett. 82, 241912 (2005).

    Google Scholar 

  13. X. Wu, K.W. Kwok, and F.L. Li, J. Alloys Compd. 580, 88 (2003).

    Article  Google Scholar 

  14. A. Kumari, V.K. Rai, and K. Kumar, Mol. Biomol. Spectrosc. 127, 98 (2014).

    Article  Google Scholar 

  15. L.H. Luo, P. Du, W.P. Li, W.D. Tao, and H.B. Chen, J. Appl. Phys. 114, 124104 (2013).

    Article  Google Scholar 

  16. P. Anurag and V.K. Rai, Appl. Phys. B 109, 611 (2012).

    Article  Google Scholar 

  17. A.K. Singh, Sens. Actuator A 136, 173 (2007).

    Article  Google Scholar 

  18. S.S. Zhou, S. Jiang, X.T. Wei, Y.H. Chen, C.K. Duan, and M. Yin, J. Alloys Compd. 488, 654 (2014).

    Article  Google Scholar 

  19. X.W. Hui, Y.X. Li, X.S. Wang, D.F. Peng, H. Zou, J. Li, Q.F. Cao, Q. Liu, and X. Yao, Ferroelectrics 487, 131 (2015).

    Article  Google Scholar 

  20. W. Xu, X.Y. Gao, L.J. Zheng, L.J. Zheng, Z.G. Zhang, and W.W. Cao, Opt. Express 20, 18127 (2012).

    Article  Google Scholar 

  21. P. Fu, Z.J. Xu, R.Q. Chu, X.Y. Wu, W. Li, and H.M. Zhang, Mater. Sci. Mater. Electron. 23, 2167 (2012).

    Article  Google Scholar 

  22. M.J. Wu, Y.Q. Lu, and Y.X. Li, J. Am. Ceram. Soc. 90, 3642 (2007).

    Article  Google Scholar 

  23. M. Davies, E. Aksel, and L. Jacob, J. Am. Ceram. Soc. 94, 1314 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China (Nos. 51072136, 50932007) and Tongji University Open Test Fund on Large-scale Instrument (No. 0002015006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, Y., Li, J. et al. Effect of the Yb3+ Concentration in Up-Conversion and Electrical Properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) Ceramics. J. Electron. Mater. 45, 3473–3478 (2016). https://doi.org/10.1007/s11664-016-4483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4483-8

Keywords

Navigation