Skip to main content
Log in

Electronic and Thermoelectric Properties of Layered Sn- and Pb-Doped Ge2Sb2Te5 Alloys Using First Principle Calculations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A computational study on stable hexagonal phase of undoped, and Sn- and Pb-doped Ge2Sb2Te5 (GST) phase change materials has been carried out. The electronic structure, lattice dynamics and thermoelectric properties of doped GST have been extensively investigated using ab initio methods with virtual crystal approximation. The hexagonal symmetry of the GST is maintained with the addition of Sn and Pb dopants. The lattice parameters and atomic volume of the Sn-doped GST structure is larger than that of the undoped GST. Electronic band structure calculations show that there is an increase in band gap with the increase in the concentration of Sn (≤4.4 at.%). However, with the addition of a very small amount of Pb, there is a continuous decrease in lattice parameters and band gap values. The calculated energy band structure is then used in combination with the Boltzmann transport equation to calculate the thermoelectric parameters of GST and Sn- and Pb-doped materials. Seebeck coefficient (S), electronic thermal conductivity (κ e) and the thermoelectric figure-of-merit (ZT) have been calculated with the help of BoltzTraP code. It was found that the thermoelectric properties of GST are enhanced with the addition of Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  2. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  3. D. Suh, C. Kim, H.P. Kim, Y. Kang, T. Lee, Y. Khang, T. Park, Y. Yoon, J. Im, and J. Ihm, Appl. Phys. Lett. 96, 123115 (2010).

    Article  Google Scholar 

  4. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  5. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  6. T. Matsunaga, H. Morita, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, J.J. Kim, M. Kobata, E. Ikenaga, and K. Kobayashi, J. Appl. Phys. 103, 093511 (2008).

    Article  Google Scholar 

  7. P.P. Konstantinov, L.E. Shelimova, M.A. Avilov, M.A. Kretova, and V.S. Zemskov, Inorg. Mater. 37, 662 (2001).

    Article  Google Scholar 

  8. S.A. Baily, D. Emin, and H. Li, Solid State Commun. 139, 161 (2006).

    Article  Google Scholar 

  9. K.S. Siegert, F.R.L. Lange, E.R. Sittner, H. Volker, C. Schlockermann, T. Siegrist, and M. Wuttig, Rep. Prog. Phys. 78, 013001 (2015).

    Article  Google Scholar 

  10. L.E. Shelimova, O.G. Karpinskii, P.P. Konstantinov, M.A. Kretova, E.S. Avilov, and V.S. Zemskov, Inorg. Mater. 37, 342 (2001).

    Article  Google Scholar 

  11. F. Yan, T.J. Zhu, X.B. Zhao, and S.R. Dong, Appl. Phys. A 88, 425 (2007).

    Article  Google Scholar 

  12. M.N. Schneider, T. Rosenthal, C. Stiewe, and O. Oeckler, Z. Kristallogr. 225, 463 (2010).

    Google Scholar 

  13. T. Rosenthal, M.N. Schneider, C. Stiewe, D. Markus, and O. Oeckler, Chem. Mater. 23, 43 (2011).

    Article  Google Scholar 

  14. J. Sun, S. Mukhopadhyay, A. Subedi, T. Siegrist, and D.J. Singh, Appl. Phys. Lett. 106, 123907 (2015).

    Article  Google Scholar 

  15. S.J. Wei, H.F. Zhu, K. Chen, D. Xu, J. Li, and F.X. Gan, Appl. Phys. Lett. 98, 231910 (2011).

    Article  Google Scholar 

  16. G. Singh, A. Kaura, M. Mukul, and S.K. Tripathi, J. Mater. Sci. 48, 299 (2013).

    Article  Google Scholar 

  17. T. Rosenthal, T. Schroeder, P. Urban, S. Welzmiller, C. Stiewe, J.D. Boor, and O. Oeckler, 32nd International Conference on Thermoelectrics (Kobe, June 30–July 04, 2013).

  18. G. Singh, A. Kaura, M. Mukul, J. Singh, and S.K. Tripathi, Appl. Phys. A 117, 1307 (2014).

    Article  Google Scholar 

  19. J.L.F. Da Silva, A. Walsh, and H. Lee, Phys. Rev. B 78, 224111 (2008).

    Article  Google Scholar 

  20. Z. Sun, J. Zhou, and R. Ahuja, Phys. Rev. Lett. 96, 055507 (2006).

    Article  Google Scholar 

  21. X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, and J.W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009).

    Article  Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  23. N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  Google Scholar 

  24. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  25. T.H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).

    Article  Google Scholar 

  26. L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000).

    Article  Google Scholar 

  27. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  28. I.I. Petrov, R.M. Immov, and Z.G. Pinker, Sov. Phys. Crystallogr. 13, 339 (1968).

    Google Scholar 

  29. B.J.J. Kooi and T.M. De Hosson, J. Appl. Phys. 92, 3584 (2002).

    Article  Google Scholar 

  30. T. Matsunaga, N. Yamada, and Y. Kabota, Acta Crystallogr. B 60, 685 (2004).

    Article  Google Scholar 

  31. Z. Sun, J. Zhou, and R. Ahuja, Phy. Rev. Lett. 96, 055507 (2006).

    Article  Google Scholar 

  32. T. Kaewmaraya, M. Ramzan, H. Löfås, and R. Ahuja, J. Appl. Phys. 113, 033510 (2013).

    Article  Google Scholar 

  33. J. Zhoua, Z. Suna, L. Xub, and R. Ahuja, Solid State Commun. 148, 113 (2008).

    Article  Google Scholar 

  34. D.R. Lide, Handbook of Chemistry and Physics, 84th ed. (Boca Raton: CRC, 2003).

    Google Scholar 

  35. J. Kumar, M. Ahmad, R. Chander, R. Thangaraj, and T.S. Sathiaraj, Eur. Phys. J. Appl. Phys. 41, 13 (2008).

    Article  Google Scholar 

  36. S. Welzmiller, T. Rosenthal, P. Ganter, L. Neudert, F. Fahrnbauer, P. Urban, C. Stiewe, J.D. Boor, and O. Oeckler, Dalton Trans. 43, 10529 (2014).

    Article  Google Scholar 

  37. T.J. Park, S.Y. Choi, and M.J. Kang, Thin Solid Films 515, 5049 (2007).

    Article  Google Scholar 

  38. T. Kato and K. Tanaka, Jpn. J. Appl. Phys. 44, 7340 (2005).

    Article  Google Scholar 

  39. E.M. Vinod, K. Ramesh, and K.S. Sangunni, Sci. Rep. 5, 8050 (2015).

    Article  Google Scholar 

  40. X. Cheng, L. Bo, S.Z. Tang, F.S. Lin, and C. Bomy, Chin. Phys. Lett. 22, 2929 (2005).

    Article  Google Scholar 

  41. J.M. Besson, J. Cernogora, and R. Zallen, Phys. Rev. B 22, 3866 (1980).

    Article  Google Scholar 

  42. A.M. Galvan and J.G. Hernandez, J. Appl. Phys. 87, 760 (2000).

    Article  Google Scholar 

  43. J. Singh, G. Singh, A. Kaura, and S.K. Tripathi, AIP Conf. Proc. 1665, 090014 (2015).

    Article  Google Scholar 

  44. J. Lee, E.B. Grayeli, S. Kim, M. Asheghi, H.S.P. Wong, and K.E. Goodson, Appl. Phys. Lett. 102, 191911 (2013).

    Article  Google Scholar 

  45. J.H. Bahk and A. Shakouri, Appl. Phys. Lett. 105, 052106 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by UGC [Major Research Project: F.No. 42-781/2013(SR)]. One of the authors, Janpreet Singh is grateful to UGC for providing financial support. They are also greatly indebted to the HPCC cluster support team, Department of Physics, Panjab University, Chandigarh, India, for providing an opportunity to carry out simulations on their cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Singh, G., Kaura, A. et al. Electronic and Thermoelectric Properties of Layered Sn- and Pb-Doped Ge2Sb2Te5 Alloys Using First Principle Calculations. J. Electron. Mater. 45, 2950–2956 (2016). https://doi.org/10.1007/s11664-016-4416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4416-6

Keywords

Navigation