Skip to main content
Log in

Effects of Sn Substitution on Thermoelectric Properties of Ge4SbTe5

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Phase-change materials are identified by their ability to rapidly alternate between amorphous and crystalline phases upon heating, exhibiting large contrast in the optical/electrical properties of the respective phases. Such materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase-change materials studied today can be found on the pseudobinary (GeTe)1−x (Sb2Te3) x tie-line. Ge4SbTe5, a single-phase compound just off of the (GeTe)1−x (Sb2Te3) x tie-line, forms in a metastable rocksalt crystal structure at room temperature. It has been found that stoichiometric and undoped Ge4SbTe5 exhibits thermal conductivity of ~1.2 W/m-K at high temperature and a dramatic decrease in electrical resistivity at 623 K due to a structural phase transition, which leads to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. Introducing point defects via isoelectronic substitutions can be an effective means of reducing thermal conductivity and enhancing thermoelectric performance. We present a study of the effects of Sn substitution for Ge on the electrical and thermal transport properties of Ge4SbTe5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, and X.B. Zhao, Nanotechnology 19, 1 (2008).

    Google Scholar 

  2. D.I. Bilc, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B 74, 125202 (2006).

    Article  Google Scholar 

  3. G. Slack, in CRC Handb. Thermoelectr., edited by D.M. Rowe (CRC Press, Boca Raton, 1995), pp. 407–441.

  4. E. Skrabek and D. Trimmer, in CRC Handbook of Thermoelectrics, ed. D. Rowe (CRC Press, Boca Raton, 1995), pp. 267–275.

  5. K. Biswas, J. He, I.D. Blum, Chun-IWu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 490, 570 (2012).

    Article  Google Scholar 

  6. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  7. M.N. Schneider, T. Rosenthal, C. Stiewe, and O. Oeckler, Z. Kristallogr. 225, 463 (2010).

    Article  Google Scholar 

  8. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, Nat. Mater. 10, 202 (2011).

    Article  Google Scholar 

  9. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nat. Mater. 7, 972 (2008).

    Article  Google Scholar 

  10. T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden, G. Bruns, I. Sergueev, H.C. Wille, R.P. Hermann, and M. Wuttig, Adv. Funct. Mater. 21, 2232 (2011).

    Article  Google Scholar 

  11. E.R. Sittner, K.S. Siegert, P. Jost, C. Schlockermann, F.R.L. Lange, and M. Wuttig, Phys. Status Solidi Appl. Mater. Sci. 210, 147 (2013).

    Article  Google Scholar 

  12. S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nat. Commun. 5, 1 (2014).

    Article  Google Scholar 

  13. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  14. H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, and K.E. Goodson, Proc. IEEE 12, 2201 (2010).

    Article  Google Scholar 

  15. R. Lucovsky and G. White, Phys. Rev. B 8, 660 (1973).

    Article  Google Scholar 

  16. T. Siegrist, P. Merkelbach, and M. Wuttig, Annu. Rev. Condens. Matter Phys. 3, 215 (2012).

    Article  Google Scholar 

  17. M. Wuttig, Phys. Status Solidi Basic Res. 10, 1843 (2012).

    Article  Google Scholar 

  18. D. Lencer, M. Salinga, and M. Wuttig, Adv. Mater. 23, 2030 (2011).

    Article  Google Scholar 

  19. M. Wuttig, S. Raoux, and M. Wuttig, Z. Anorg. Allg. Chem. 638, 2455 (2012).

    Google Scholar 

  20. W. Wełnic, S. Botti, L. Reining, and M. Wuttig, Phys. Rev. Lett. 98, 1 (2007).

    Google Scholar 

  21. S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nat. Commun. 5, 1 (2014).

    Article  Google Scholar 

  22. R. Berman, P.T. Nettley, F.W. Sheard, A.N. Spencer, R.W.H. Stevenson, and J.M. Ziman, Proc. R. Soc. A Math. Phys. Eng. Sci. 253, 403 (1959).

    Article  Google Scholar 

  23. R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976), p 97.

  24. S. Buller, C. Koch, W. Bensch, P. Zalden, R. Sittner, S. Kremers, M. Wuttig, U. Schürmann, L. Kienle, T. Leichtweiß, J. Janek, and B. Schönborn, Chem. Mater. 24, 3582 (2012).

    Article  Google Scholar 

  25. T. Rosenthal, L. Neudert, P. Ganter, J. de Boor, C. Stiewe, and O. Oeckler, J. Solid State Chem. 215, 231 (2014).

    Article  Google Scholar 

  26. T. Rosenthal, P. Urban, K. Nimmrich, L. Schenk, J. de Boor, C. Stiewe, and O. Oeckler, Chem. Mater. 26, 2567 (2014).

    Article  Google Scholar 

  27. N. Bai, F.R. Liu, X.X. Han, Z. Zhu, F. Liu, X. Lin, and N.X. Sun, Appl. Surf. Sci. 316, 202 (2014).

    Article  Google Scholar 

  28. S. Welzmiller, T. Rosenthal, P. Ganter, L. Neudert, F. Fahrnbauer, P. Urban, C. Stiewe, J. de Boor, and O. Oeckler, Dalton Trans. 43, 10529 (2014).

    Article  Google Scholar 

  29. R. Ruiz Santos, E. Prokhorov, F.J. Espinoza Beltran, L.G. Trapaga Martınez, and J. Gonzalez-Hernandez, J. Non. Cryst. Solids 356, 3026 (2010).

  30. J.B. Williams, E. Lara-Curzio, E. Cakmak, T. Watkins, and D.T. Morelli, J. Mater. Res. 30, 2065 (2015).

  31. L. Vegard, Z. Phys. 5, 17 (1921).

    Article  Google Scholar 

  32. C.S. Barrett, P. Cucka, and K. Haefner, Acta Crystallogr. 16, 451 (1963).

    Article  Google Scholar 

  33. M.N. Schneider, P. Urban, A. Leineweber, M. Döblinger, and O. Oeckler, Phys. Rev. B Condens. Matter Mater. Phys. 81, 184102 (2010).

  34. Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).

    Article  Google Scholar 

  35. M. Choi, H. Choi, S. Kim, J. Ahn, and Y. Tae Kim, Sci. Rep. 5, 12867 (2015).

  36. L.V. Lorenz, Œuvres Scientifiques de L. Lorenz, vol. 1 (Johnson Reprint Corporation, Copenhagen, 1898).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared B. Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, J.B., Mather, S. & Morelli, D.T. Effects of Sn Substitution on Thermoelectric Properties of Ge4SbTe5 . J. Electron. Mater. 45, 1077–1084 (2016). https://doi.org/10.1007/s11664-015-4221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4221-7

Keywords

Navigation