Skip to main content
Log in

Enhanced Multiferroic Properties of Eu-Doped BiFeO3 Thin Films Derived from Rhombohedral–Tetragonal Phase Boundary

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Eu-doped BiFeO3 multiferroic thin films were prepared using a sol–gel technique. The effect of Eu3+ ion substitutional doping on the multiferroic properties of BiFeO3 thin films was investigated in detail, revealing obvious enhancement of ferroelectricity and ferromagnetism. The enhanced multiferroic properties are attributed to phase boundary, where two phases with rhombohedral and tetragonal structure coexist. Both x-ray diffraction analysis and Raman spectroscopy confirmed that BiFeO3 thin films with 5% Eu doping (Bi0.95Eu0.05FeO3) undergo a phase transformation from a rhombohedral to tetragonal structure. Thus, it is suggested that there is rhombohedral– tetragonal phase boundary in Bi0.95Eu0.05FeO3 thin films. Additionally, the leakage current density of the thin films decreased under high electric field after Eu doping, which is attributed to a change of the leakage current conduction mechanism related to the formation of rhombohedral–tetragonal phase boundary. The present work provides an easy method to enhance the multiferroic properties of BiFeO3-based thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Spaldin and M. Fiebig, Science 309, 391 (2005).

    Article  Google Scholar 

  2. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Liu, and J.M. Liu, Adv. Mater. 19, 2889 (2007).

    Article  Google Scholar 

  3. R. Ramesh and N.A. Spaldin, Nat. Mater. 6, 21 (2007).

    Article  Google Scholar 

  4. L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, and R. Ramesh, J. Phys. Condens. Matter 20, 434220 (2008).

    Article  Google Scholar 

  5. M. Fiebig, J. Phys. D 38, R123 (2005).

    Article  Google Scholar 

  6. S. Seki, X.Z. Yu, S. Ishiwata, and Y. Tokura, Science 336, 198 (2012).

    Article  Google Scholar 

  7. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    Article  Google Scholar 

  8. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Article  Google Scholar 

  9. M.R. Li, U. Adem, S.R.C. McMitchell, Z. Xu, C.I. Thomas, J.E. Warren, D.V. Giap, H. Niu, X. Wan, R.G. Palgrave, F. Schiffmann, F. Cora, B. Slater, T.L. Burnett, M.G. Cain, A.M. Abakumov, G. Tendeloo, M.F. Thomas, M.J. Rosseinsky, and J.B. Claridge, J. Am. Chem. Soc. 134, 3737 (2012).

    Article  Google Scholar 

  10. G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  11. D. Lebeugle, A. Mougin, M. Viret, D. Colson, and L. Ranno, Phys. Rev. Lett. 103, 257601 (2009).

    Article  Google Scholar 

  12. D. Schick, M. Herzog, H. Wen, P. Chen, C. Adamo, P. Gaal, D.G. Schlom, P.G. Evans, Y. Li, and M. Bargheer, Phys. Rev. Lett. 112, 097602 (2014).

    Article  Google Scholar 

  13. G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, and J.F. Scott, Phys. Rev. Lett. 100, 027602 (2008).

    Article  Google Scholar 

  14. J.R. Teague, R. Gerson, and W.J. James, Solid State Commun. 8, 1073 (1970).

    Article  Google Scholar 

  15. S.V. Kiselev, R.P. Ozerov, and G.S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1963).

    Google Scholar 

  16. J.S. Park, Y.J. Yoo, J.S. Hwang, J.H. Kang, B.W. Lee, and Y.P. Lee, J. Appl. Phys. 115, 013904 (2014).

    Article  Google Scholar 

  17. T. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, and S.S. Wong, Nano Lett. 7, 766 (2007).

    Article  Google Scholar 

  18. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson. Phys. Rev. B 74, 224412 (2006).

    Article  Google Scholar 

  19. I. Bretos, R. Jiménez, C. Gutiérrez-Lázaro, I. Montero, and M.L. Calzada, Appl. Phys. Lett. 104, 092905 (2014).

    Article  Google Scholar 

  20. R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, J. Phys. Chem. C 114, 21390 (2010).

    Article  Google Scholar 

  21. J. Yan, M. Gomi, T. Yokota, and H. Song, Appl. Phys. Lett. 102, 222906 (2013).

    Article  Google Scholar 

  22. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  Google Scholar 

  23. J. Liu, L. Fang, F. Zheng, S. Ju, and M. Shen, Appl. Phys. Lett. 95, 022511 (2009).

    Article  Google Scholar 

  24. Z. Wen, X. Shen, D. Wu, Q. Xu, J. Wang, and A. Li, Solid State Commun. 150, 2081 (2010).

    Article  Google Scholar 

  25. Z. Hu, M. Li, Y. Yu, J. Liu, L.G. Pei, J. Wang, X. Liu, B. Yu, and X. Zhao, Solid State Commun. 150, 1088 (2010).

    Article  Google Scholar 

  26. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  27. R. Xiao, V.O. Pelenovich, and D. Fu, Appl. Phys. Lett. 103, 012901 (2013).

    Article  Google Scholar 

  28. Y. Li, H. Yang, W. Yang, Z. Hou, J. Li, H. Jin, J. Yuan, and M.S. Cao, Mater. Lett. 111, 130 (2013).

    Article  Google Scholar 

  29. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926).

    Article  Google Scholar 

  30. Y. Wang and C. Nan, J. Appl. Phys. 103, 114104 (2008).

    Article  Google Scholar 

  31. P. Hermet, M. Goffinet, J. Kreisel, and P. Ghosez, Phys. Rev. B 75, 220102 (2007).

    Article  Google Scholar 

  32. Y. Yang, J.Y. Sun, K. Zhu, Y.L. Liu, and L. Wan, J. Appl. Phys. 103, 093532 (2008).

    Article  Google Scholar 

  33. M.K. Singh, S. Ryu, and H.M. Jang, Phys. Rev. B 72, 132101 (2005).

    Article  Google Scholar 

  34. C.M. Raghavan, D. Do, J.W. Kim, W. Kim, and S.S. Kim, J. Am. Ceram. Soc. 95, 1933 (2012).

    Article  Google Scholar 

  35. J. Huang, Y. Shen, M. Li, and C. Nan, J. Appl. Phys. 110, 094106 (2011).

    Article  Google Scholar 

  36. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, and R. Ramesh, Science 326, 977 (2009).

    Article  Google Scholar 

  37. J.X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M.D. Rossell, P. Yu, L. You, C.H. Wang, C.Y. Kuo, J.T. Heron, Z. Hu, R.J. Zeches, H.J. Lin, A. Tanaka, C.T. Chen, L.H. Tjeng, Y.H. Chu, and R. Ramesh, Phys. Rev. Lett. 107, 147602 (2011).

    Article  Google Scholar 

  38. Z. Hu, M. Li, J. Liu, L. Pei, J. Wang, B. Yu, and X. Zhao, J.␣Am. Ceram. Soc. 93, 2743 (2010).

    Article  Google Scholar 

  39. K.G. Yang, Y.L. Zhang, S.H. Yang, and B. Wang, J. Appl. Phys. 107, 124109 (2010).

    Article  Google Scholar 

  40. G.W. Pabst, L.W. Martin, Y.H. Chu, and R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007).

    Article  Google Scholar 

  41. P. Suresh, P.D. Babu, and S. Srinath, J. Appl. Phys. 115, 17D905 (2014).

    Article  Google Scholar 

  42. C. Nayek, A. Tamilselvan, C. Thirmal, P. Murugavel, and S. Balakumar, J. Appl. Phys. 115, 073902 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Projects for Basic Research of China (973 Projects) (Grant No. 2012CB626815), the National Natural Science Foundation of China (Grant Nos. 11264026, 10904065), and Inner Mongolia Science Foundation for Distinguished Young Scholars (Grant No. 2014JQ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Zhao.

Additional information

Wenyu Xing and Yinina Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Ma, Y., Chen, J. et al. Enhanced Multiferroic Properties of Eu-Doped BiFeO3 Thin Films Derived from Rhombohedral–Tetragonal Phase Boundary. J. Electron. Mater. 44, 3752–3760 (2015). https://doi.org/10.1007/s11664-015-3844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3844-z

Keywords

Navigation