Skip to main content

Advertisement

Log in

p × n-Type Transverse Thermoelectrics: A Novel Type of Thermal Management Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper we review the recently identified p × n-type transverse thermoelectrics and study the thermoelectric properties of the proposed candidate materials. Anisotropic electron and hole conductivity arise from either an artificially engineered band structure or from appropriately anisotropic crystals, and result in orthogonal p-type and n-type directional Seebeck coefficients, inducing a non-zero off-diagonal transverse Seebeck coefficient with appropriately oriented currents. Such materials have potential for new applications of thermoelectric materials in transverse Peltier cooling and transverse thermal energy harvesting. In this paper we review general transverse thermoelectric phenomena to identify advantages of p × n-type transverse thermoelectrics compared with previously studied transverse thermoelectric phenomena. An intuitive overview of the band structure of one such p × n-material, the InAs/GaSb type-II superlattice, is introduced, and the plot of thermoelectric performance as a function of superlattice structure is calculated, as an example of how band structures can be optimized for the best transverse thermoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano (CRC Press, London, 2006).

    Google Scholar 

  2. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).

    Article  Google Scholar 

  3. D.M. Rowe, in Thermoelectrics Handbook: Macro to Nano, chap. 1, ed. by D.M. Rowe (CRC Press, London, 2006).

    Google Scholar 

  4. H.J. Goldsmid, J. Electron. Mater. 40, 1254 (2011).

    Article  Google Scholar 

  5. A.A. Snarskii and L.P. Bulat, in Thermoelectrics Handbook: Macro to Nano, chap. 45, ed. by D.M. Rowe (CRC Press, London, 2006).

  6. H.J. Goldsmid, in Materials, Preparation, and Characterization in Thermoelectrics, chap. 1, ed. by D.M. Rowe (CRC Press, London, 2012), pp. 1–3.

    Chapter  Google Scholar 

  7. C. Zhou, S. Birner, Y. Tang, K. Heinselman, and M. Grayson, Phys. Rev. Lett. 110, 227701 (2013).

    Article  Google Scholar 

  8. Th. Zahner, R. Förg, and H. Lengfellner, Appl. Phys. Lett. 73, 1364 (1998).

    Article  Google Scholar 

  9. A. Kyarad and H. Lengfellner, Appl. Phys. Lett. 87, 182113 (2005).

    Article  Google Scholar 

  10. A. Kyarad and H. Lengfellner, Appl. Phys. Lett. 89, 192103 (2006).

    Article  Google Scholar 

  11. B.J. O’Brien and C.S. Wallace, J. Appl. Phys. 29, 1010 (1958).

    Article  Google Scholar 

  12. T.S. Gudkin, E.K. Iordanishvili, and E.E. Fiskind, Sov. Phys. Tech. Phys. Lett. 4, 607 (1978).

    Google Scholar 

  13. A. Ettingshausen and W. Nernst, Annalen der Physik und Chemie 265, 343 (1886).

    Article  Google Scholar 

  14. W.M. Yim and A. Amith, Solid State Electron. 15, 1141 (1972).

    Article  Google Scholar 

  15. R.B. Horst and L.R. Williams, Potential figure-of-merit of the BiSb alloys. Proceedings of Third International Conference on Thermoelectric Energy Conversion, Arlington, Texas (IEEE, New York, 1980), p. 183.

  16. H.J. Goldsmid, in Thermoelectrics Handbook: Macro to Nano, chap. 8, ed. by D.M. Rowe (CRC Press, London, 2006)

    Google Scholar 

  17. C.F. Kooi, R.B. Horst, K.F. Cuff, and S.R. Hawkins, J. Appl. Phys. 34, 1735 (1963).

    Article  Google Scholar 

  18. V.P. Babin, T.S. Gudkin, Z.M. Dashevskii, L.D. Dudkin, E.K. Iordanishvilli, V.I. Kaidanov, N.V. Kolomoets, O.M. Narva, and L.S. Stil’bans, Sov. Phys. Semicond. 8, 478 (1974).

    Google Scholar 

  19. K. Fischer, C. Stoiber, A. Kyarad, and H. Lengfellner, Appl. Phys. A 78, 323 (2004).

    Article  Google Scholar 

  20. A. Kyarad and H. Lengfellner, Appl. Phys. Lett. 85, 5613 (2004).

    Article  Google Scholar 

  21. T. Kanno, K. Takahashi, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, J. Electron. Mater. 43, 2072 (2014).

    Article  Google Scholar 

  22. K. Takahashi, T. Kanno, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, Sci. Rep. 3, 1501 (2013).

    Google Scholar 

  23. A.G. Samoilovich, M.V. Nitsovich, and V.M. Nitsovich, Phys. Status Solidi 16, 459 (1966).

    Article  Google Scholar 

  24. S.L. Korolyuk, I.M. Pilat, A.G. Samoilovich, V.N. Slipchenko, A.A. Snarskii, and E.F. Tsarkov, Sov. Phys. Semicond. 7, 725 (1973).

    Google Scholar 

  25. I.M. Pilat, Teplovye priemniki izlucheniya (Thermal Detectors) (Gos. Opticheskii Inst., Leningrad, 1990), pp. 52–57.

    Google Scholar 

  26. A.A. Ashcheulov, N.N. Glemba, and L.I. Prostebi, Izv. Vyssh. Uchebn. Zaved. Élektromekh 12, 1333 (1980).

  27. A.A. Ashcheulov, V.M. Kondratenko, N.K. Voronka, and I.M. Rarenko, in Direct Methods of Energy Conversion (Ashkhabad, 1986), p. 210 (in Russian).

  28. L.I. Anatychuk, Thermoelements and Thermoelectric Devices (Naukova Dumka, Kiev, 1979), p. 768.

    Google Scholar 

  29. V.K. Zaitsev, in Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC Press, New York, 1995), p. 299.

    Google Scholar 

  30. B.K. Voronov, L.D. Dudkin, and N.N. Trusov, Sov. Phys. Crystallogr. 12, 448 (1967).

    Google Scholar 

  31. Z.H. He, Z.G. Ma, Q.Y. Li, Y.Y. Luo, J.X. Zhang, R.L. Meng, and C.W. Chu, Appl. Phys. Lett. 69, 3587 (1996).

    Article  Google Scholar 

  32. X.H. Li, H.U. Habermeier, and P.X. Zhang, J. Magn. Magn. Mater. 211, 232 (2000)

    Article  Google Scholar 

  33. K. Zhao, K.J. Jin, Y.H. Huang, H.B. Lu, M. He, Z.H. Chen, Y.L. Zhou, and G.Z. Yang, Phys. B 373, 72 (2006).

    Article  Google Scholar 

  34. W.M. Huber, S.T. Li, A. Ritzer, D. Bäuerle, H. Lengfellner, and W. Prettl, Appl. Phys. A 64, 487 (1997).

    Article  Google Scholar 

  35. T. Kanno, S. Yotsuhashi, and H. Adachi, Appl. Phys. Lett. 85, 739 (2004).

    Article  Google Scholar 

  36. G.D. Tang, H.H. Guo, T. Yang, D.W. Zhang, X.N. Xu, L.Y. Wang, Z.H. Wang, H.H. Wen, Z.D. Zhang, and Y.W. Du, Appl. Phys. Lett. 98, 202109 (2011).

    Article  Google Scholar 

  37. Th Zahner, R. Stierstorfer, S. Reindl, T. Schauer, A. Penzkofer, and H. Lengfellner, Phys. C 313, 37 (1999).

    Article  Google Scholar 

  38. A.T. Burkov, and M.V. Vedernikov, Zh. Eksp. Teor. Fiz. 85, 1821 (1983).

    Google Scholar 

  39. K.P. Ong, D.J. Singh, and P. Wu, Phys. Rev. Lett. 104, 176601 (2010).

    Article  Google Scholar 

  40. A.T. Burkov, and M.V. Vedernikov, Fiz. Tverd. Tela (Leningrad) 28, 3737 (1986).

    Google Scholar 

  41. J.J. Gu, M.W. Oh, H. Inui, and D. Zhang, Phys. Rev. B 71, 113201 (2005).

    Article  Google Scholar 

  42. D.Y. Chung, S.D. Mahanti, W. Chen, C. Uher, and M.G. Kanatzidis, Mater. Res. Soc. Symp. Proc. 793, S6.1.1 (2004).

    Google Scholar 

  43. C. Zhou, Transverse p × n type thermoelectrics: type II superlattices and their thermal conductivity characterization, PhD dissertation, Northwestern University, 2013.

  44. nextnano3, http://www.nextnano.de.

  45. C.H. Grein, P.M. Young, M.E. Flatte, and H. Ehrenreich, J. Appl. Phys. 78, 7143 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support from the Northwestern EECS Bridge grant and ISEN Booster grant, as well as support from the NSF MRSEC DMR-1121262 and AFOSR FA9550-12-1-0169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Grayson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Cui, B., Zhou, C. et al. p × n-Type Transverse Thermoelectrics: A Novel Type of Thermal Management Material. J. Electron. Mater. 44, 2095–2104 (2015). https://doi.org/10.1007/s11664-015-3666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3666-z

Keywords

Navigation