Skip to main content
Log in

Thermoelectric Properties of Cobalt Antimony Thin Films Deposited on Flexible Substrates by Radio Frequency Magnetron Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Cobalt antimony thin films were deposited on flexible substrates at room temperature by radio frequency magnetron sputtering with different sputtering power. The atomic ratio of Co to Sb in the cobalt antimony thin film was closest to 1:3 when the sputtering power was 55 W. The thermoelectric properties of the thin films deposited at room temperature were inconspicuous due to their amorphous microstructure which was characterized by x-ray diffraction. To enhance the thermoelectric properties of the thin films, cobalt antimony thin film deposited by sputtering power of 55 W was annealed at various temperatures ranging from 443 K to 593 K. It was found that all the thin films had n-type conductivity and the CoSb3 thin films annealed at 493–593 K were polycrystalline with (310) preferential orientation. The Seebeck coefficient of CoSb3 thin films annealed at 543 K increased with the raising of the measuring temperature (323–473 K), and the maximum Seebeck coefficient was −88 μV/K, which is the highest value for CoSb3 thin films deposited on flexible substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, W.X. Guo, K.C. Pradel, G. Zhu, Y.S. Zhou, Y. Zhang, Y.F. Hu, L. Lin, and Z.L. Wang, Nano Lett. 12, 2833 (2012).

    Article  Google Scholar 

  2. P. Jood, R.J. Mehta, Y.L. Zhang, G. Peleckis, X.L. Wang, R.W. Siegel, T.B. Tasciuc, S.X. Dou, and G. Ramanath, Nano Lett. 11, 4337 (2011).

    Article  Google Scholar 

  3. K. Park and K.Y. Ko, J. Alloys Compd. 430, 200 (2007).

    Article  Google Scholar 

  4. J.Y. Peng, P.N. Alboni, J. He, B. Zhang, Z. Su, T. Holgate, N. Gothard, and T.M. Tritt, J. Appl. Phys. 104, 053710 (2008).

    Article  Google Scholar 

  5. R.C. Mallik, C. Stiewe, G. Karpinski, R. Hassdorf, and E. Muller, J. Electron. Mater. 38, 1337–1341 (2009).

    Article  Google Scholar 

  6. J.Q. Yang, B. Xu, L. Zhang, Y.D. Liu, D.L. Yu, Z.Y. Liu, J.L. He, and Y.J. Tian, Mater. Lett. 98, 171 (2013).

    Article  Google Scholar 

  7. P.X. Lu, F. Wu, H.L. Han, Q. Wang, Z.G. Shen, and X. Hu, J. Alloys Compd. 505, 255 (2010).

    Article  Google Scholar 

  8. D.V. Quach, R. Vidu, J.R. Groza, and P. Stroeve, Ind. Eng. Chem. Res. 49, 11385 (2010).

    Article  Google Scholar 

  9. L. Bjerg, G.K.H. Madsen, and B.B. Iversen, Chem. Mater. 23, 3907 (2011).

    Article  Google Scholar 

  10. W.B. Chen and J.B. Li, Appl. Phys. Lett. 98, 241901 (2011).

    Article  Google Scholar 

  11. S.R. Sarath Kumar, Dongkyu Cha, and H.N. Alshareef, J. Appl. Phys. 110, 083710 (2011).

    Article  Google Scholar 

  12. V. Savchuk, A.B. Oulcuz, S. Chakraborty, J. Schumann, and H. Vinzelberg, J. Appl. Phys. 92, 5319 (2002).

    Article  Google Scholar 

  13. A. Suzuki, J SAP. 42, 2843 (2003).

    Google Scholar 

  14. R. Zeipl, J. Walachova, J. Lorincik, S. Leshkov, M. Josiekova, M. Jelinek, T. Kocourek, K. Jurek, J. Navratil, L. Benes, and T. Plechacek, J. Vac. Sci. Technol. A 28, 523–527 (2010).

    Article  Google Scholar 

  15. J.C. Caylor, A.M. Stacy, R. Gronsky, and T. Sands, J. Appl. Phys. 86, 3508–3513 (2001).

    Article  Google Scholar 

  16. J.L. Mi, X.B. Zhao, T.J. Zhu, and J.P. Tu, Appl. Phys. Lett. 92, 029905 (2008).

    Article  Google Scholar 

  17. M. Daniel, M. Friedemann, N. Johrmann, A. Liebig, J. Donges, M. Hietschold, G. Beddies, and M. Albrecht Phys. Status Solidi A 210, 140–146 (2013).

    Article  Google Scholar 

  18. S.R.S Kumar, D. Cha, and H.N. Alshareef, J. Appl. Phys. 110, 083710 (2011).

    Article  Google Scholar 

  19. J.C. Caylor, M.S. Sander, A.M. Stacy, J.S. Harper, R. Gronsky, and T. Stands, J. Mater. Res. 16, 2467 (2001).

  20. S.R. Sarath Kumar, A. Alyamani, J.W. Graff, T.M. Tritt, and H.N. Alshareef, J. Mater. Res. 26, 1836 (2011).

    Article  Google Scholar 

  21. S.R. Sarath Kumar, Dongkyu Cha, and H.N. Alshareef, J. Appl. Phys. 110, 083710 (2011).

    Article  Google Scholar 

  22. Z.H. Zheng, P. Fan, G.X. Liang, D.P. Zhang, X.M. Cai, and T.B. Chen, J. Phys. Chem. Solids 71, 1713 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Supported by Special Project on the Integration of Industry, Education and Research of Guangdong Province (2012B091000174) and Basical Research Program of Shenzhen, China (JC201104210094A, JCYJ20120817163755062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Zhang, Y., Zheng, Zh. et al. Thermoelectric Properties of Cobalt Antimony Thin Films Deposited on Flexible Substrates by Radio Frequency Magnetron Sputtering. J. Electron. Mater. 44, 630–635 (2015). https://doi.org/10.1007/s11664-014-3546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3546-y

Keywords

Navigation