Skip to main content
Log in

Structural and Thermoelectric Properties of Nanocrystalline Bismuth Telluride Thin Films Under Compressive and Tensile Strain

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An Erratum to this article was published on 18 February 2015

Abstract

To investigate the effect of strain on bismuth telluride films, we applied different compressive and tensile strains to thin films by changing the bending radius of a flexible substrate so the strain ranged from −0.3% (compressive) to +0.3% (tensile). The structural properties of the strained thin films, composed of nanosized grains, were analyzed by x-ray diffraction and scanning electron microscopy. For all samples the main peak was the (015) diffraction peak; crystal orientation along the (015) growth direction was slightly enhanced by application of compressive strain. The thermoelectric properties of strained bismuth telluride thin films were evaluated by measurement of electrical conductivity, Seebeck coefficient, and power factor. The magnitude and direction of the applied strain did not significantly affect the power factor, because when the strain changed from compressive to tensile the electrical conductivity increased and the absolute Seebeck coefficient decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-T. Hsu, G.-Y. Huang, H.-S. Chu, B. Yu, and D.-J. Yao, Appl. Energy 88, 1291 (2011).

    Article  Google Scholar 

  2. J. Weber, K. Potje-Kamloth, F. Haase, P. Detemple, F. Volklein, and T. Doll, Sens. Actuators A 132, 325 (2006).

    Article  Google Scholar 

  3. M. Takashiri, T. Shirakawa, K. Miyazaki, and H. Tsukamoto, Sens. Actuators A 138, 329 (2007).

    Article  Google Scholar 

  4. C. Shafai and M.J. Brett, J. Vac. Sci. Technol. A 15, 2798 (1990).

    Article  Google Scholar 

  5. D.D.L. Wijngaards, S.H. Kong, M. Bartek, and R.F. Wolffenbuttel, Sens. Actuators A 85, 316 (2000).

    Article  Google Scholar 

  6. D. Samson, M. Kluge, Th Becker, and U. Schmid, Sens. Actuators A 172, 240 (2011).

    Article  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  8. A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 205302 (2009).

    Article  Google Scholar 

  9. M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki, J. Appl. Phys. 112, 084315 (2012).

    Article  Google Scholar 

  10. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  11. M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys. 104, 084302 (2008).

    Article  Google Scholar 

  12. M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki, Int. J. Heat Mass Transf. 76, 376 (2014).

    Article  Google Scholar 

  13. D. Maier, Solid State Commun. 122, 565 (2002).

    Article  Google Scholar 

  14. J.F. Meng, N.V. Chandra Shekar, J.V. Badding, D.-Y. Chung, and M.G. Kanatzidis, J. Appl. Phys. 90, 2836 (2001).

    Article  Google Scholar 

  15. D.A. Polvani, J.F. Meng, N.V. Chandra Shekar, J. Sharp, and J.V. Badding, Chem. Mater. 13, 2068 (2001).

    Article  Google Scholar 

  16. J. He, S.N. Girard, M.G. Kanatzidis, and V.P. Dravid, Adv. Funct. Mater. 20, 764 (2010).

    Article  Google Scholar 

  17. J.F. Meng, N.V. Chandra Shekar, D.-Y. Chung, M. Kanatzidis, and J.V. Badding, J. Appl. Phys. 94, 4485 (2003).

    Article  Google Scholar 

  18. T. Sekitani, Y. Kato, S. Iba, H. Shinaoka, T. Someya, T. Sakurai, and S. Takagi, Appl. Phys. Lett. 86, 073511 (2005).

    Article  Google Scholar 

  19. A.N. Sokolov, Y. Cao, O.B. Johnson, and Z. Bao, Adv. Funct. Mater. 22, 175 (2012).

    Article  Google Scholar 

  20. E. Menard, R.G. Nuzzo, and J.A. Rogers, Appl. Phys. Lett. 86, 093507 (2005).

    Article  Google Scholar 

  21. T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, Nat. Mater. 9, 1015 (2010).

    Article  Google Scholar 

  22. F.-C. Chen, T.-D. Chen, B.-R. Zeng, and Y.-W. Chung, Semicond. Sci. Technol. 26, 034005 (2011).

    Article  Google Scholar 

  23. R.J. Buist, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995),

    Google Scholar 

  24. M. Takashiri, S. Tanaka, K. Miyazaki, and H. Tsukamoto, J. Alloys Compd. 490, 44 (2010).

    Article  Google Scholar 

  25. M. Takashiri, S. Tanaka, and K. Miyazaki, J. Electron. Mater. 43, 1881 (2014).

    Article  Google Scholar 

  26. M. Takashiri, K. Imai, M. Uyama, H. Hagino, S. Tanaka, K. Miyazaki, and Y. Nishi, J. Appl. Phys. 115, 214311 (2014).

    Article  Google Scholar 

  27. Z. Suo, E.Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett. 74, 1177 (1999).

    Article  Google Scholar 

  28. G. Wang and T. Cagin, Appl. Phys. Lett. 89, 152101 (2006).

    Article  Google Scholar 

  29. S.V. Ovsyannikov, V.V. Shchennikov, G.V. Vorontsov, A.Y. Manakov, A.Y. Likhacheva, and V.A. Kulbachinskii, J. Appl. Phys. 104, 053713 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Takashiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusagaya, K., Hagino, H., Tanaka, S. et al. Structural and Thermoelectric Properties of Nanocrystalline Bismuth Telluride Thin Films Under Compressive and Tensile Strain. J. Electron. Mater. 44, 1632–1636 (2015). https://doi.org/10.1007/s11664-014-3496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3496-4

Keywords

Navigation