Skip to main content
Log in

Structural and Superconducting Properties of (Al2O3) y /CuTl-1223 Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The effects of nano-Alumina (Al2O3) particles inclusion on the structural and superconducting transport properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ (CuTl-1223) matrix were explored in detail. Different concentrations (i.e. y =  0–1.5 wt.%) of Al2O3 nanoparticles were added to a CuTl-1223 matrix to obtain the desired (Al2O3) y /CuTl-1223 nano-superconducting composites. No significant change was observed in the crystal structure and stoichiometry of the host CuTl-1223 superconducting phase after the addition of Al2O3 nanoparticles. This indicates the occupancy of these nanoparticles at the inter-granular spaces. The superconductivity was suppressed with increasing Al2O3 nanoparticles contents in the CuTl-1223 matrix. The suppression of superconducting properties is most probably due to a pair-breaking mechanism caused by the reflection/scattering of carriers across the insulating nano-Al2O3 particles present at the grain boundaries. The non-monotonic variation of the superconducting properties may be due to inhomogeneous distribution of Al2O3 nanoparticles at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ihara, K. Tokiwa, H. Ozawa, M. Hirabayashi, A. Negishi, H. Matuhata, and Y.S. Song, Jpn. J. Appl. Phys. 33, L503 (1994).

    Article  Google Scholar 

  2. H. Ihara, Physica C 364–365, 289 (2001).

    Article  Google Scholar 

  3. Z.Z. Sheng and A.M. Hermann, Nature 332, 55 (1988).

    Article  Google Scholar 

  4. Z.Z. Sheng, A.M. Hermann, A.E. Ali, C. Almasan, J. Estrada, T. Datta, and R.J. Matson, Phys. Rev. Lett. 60, 937 (1988).

    Article  Google Scholar 

  5. Z.Z. Sheng and A.M. Hermann, Nature 332, 138 (1988).

    Article  Google Scholar 

  6. G. Malandrino, D.S. Richeson, T.J. Marks, D.C. De Groot, J.L. Schindler, and C.R. Kannewurf, Appl. Phys. Lett. 58, 182 (1991).

    Article  Google Scholar 

  7. M.L. Chu, H.L. Chang, C. Wang, J.Y. Juang, T.M. Uen, and Y.S. Gou, Appl. Phys. Lett. 59, 1123 (1991).

    Article  Google Scholar 

  8. W.L. Oslon, M.M. Eddy, T.W. James, R.B. Hammond, G. Gruner, and L. Drabeck, Appl. Phys. Lett. 55, 188 (1989).

    Article  Google Scholar 

  9. S.H. Yun and J.Z. Wu, Appl. Phys. Lett. 68, 862 (1996).

    Article  Google Scholar 

  10. M. Annabi, A.M. Chirgui, F.B. Azzuoz, and M.B. Salem, Physica C 25, 405 (2004).

    Google Scholar 

  11. N.A. Khan, M. Mumtaz, K. Sabeeh, M.I.A. Khan, and M. Ahmed, Physica C 407, 103 (2004).

    Article  Google Scholar 

  12. K. Semba, A. Matsuda, and T. Ishii, Phys. Rev. B 49, 10043 (1996).

    Article  Google Scholar 

  13. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    Article  Google Scholar 

  14. K. Heine, J. Tenbrink, and M. Thoner, Appl. Phys. Lett. 55, 2441 (1989).

    Article  Google Scholar 

  15. J.Y. Yuang, J.H. Horng, S.P. Chen, C.M. Fu, K.H. Wu, T.M. Uen, and Y.S. Gou, Appl. Phys. Lett. 66, 885 (1995).

    Article  Google Scholar 

  16. M. Mumtaz, N.A. Khan, and S. Khan, J. Appl. Phys. 107, 103905 (2010).

  17. M. Mumtaz, N.A. Khan, and E.U. Khan, Physica C 470, 428 (2010).

  18. N.A. Khan and M. Mumtaz, J. Low Temp. Phys. 151, 1221 (2008).

    Article  Google Scholar 

  19. C. Wang, Z. Gao, L. Wang, Y. Qi, D. Wang, C. Yao, Z. Zhang, and Y. Ma, Supercond. Sci. Technol. 23, 055002 (2010).

    Article  Google Scholar 

  20. B.P. Mikhailov, G.S. Burkhanov, G.M. Leitus, G.N. Mikhailova, A.M. Prokhorov, A.S. Seferov, A.V. Troitskii, and I.E. Lapshina, Inorganic Mater. 32, 1073 (1996).

    Google Scholar 

  21. M.M. Elokr, R. Awad, A.A. El-Ghany, A. Shama, and A.A. El-wanis, J. Supercond. Nov. Magn. 24, 1345 (2011).

    Article  Google Scholar 

  22. N.H. Mohammad, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, and M. Rek-aby, J. Alloys Compd. 486, 733 (2009).

    Article  Google Scholar 

  23. N.H. Mohammad, A.I. Abou-Aly, R. Awad, I.H. Ibrahim, M. Roumie, and M. Rekaby, J. Low Temp. Phys. 172, 234 (2013).

    Article  Google Scholar 

  24. S.G. Elsharkawy and R. Awad, J. Alloys Compd. 478, 642 (2009).

    Article  Google Scholar 

  25. R. Awad, J. Supercond. Nov. Magn. 21, 461 (2013).

    Article  Google Scholar 

  26. A. Mellekh, M. Zouaoui, F.B. Azzouz, M. Annabi, and M.B. Salem, Solid Stat. Commun. 140, 318 (2006).

  27. A. Ghattas, F.B. Azzouz, M. Annabi, M. Zouaoui, and M.B. Salem, J. Phys. 97, 012175 (2008).

    Google Scholar 

  28. M. Annabi, A. Ghattas, M. Zouaoui, F.B. Azzouz, and M.B. Salem, J. Phys. 150, 052008 (2009).

    Google Scholar 

  29. N. Moutalibi, A. M’chirgui, and J. Noudem, Physica C 470, 568 (2010).

    Article  Google Scholar 

  30. A. Mellekh, M. Zouaoui, F.B. Azzouz, M. Annabi, and M.B. Salem, Physica C 460–462, 426 (2007).

    Article  Google Scholar 

  31. X.F. Rui, J. Chen, X. Chen, W. Guo, and H. Zhang, Physica C 412–414, 312 (2004).

    Article  Google Scholar 

  32. K. Nadeem, F. Naeem, M. Mumtaz, S. Naeem, A. Jabbar, I. Qasim, and N.A. Khan, Ceram. Int. 40, 13819 (2014).

    Article  Google Scholar 

  33. M. Mumtaz, M. Zubair, N.A. Khan, and S. Abbas, Low Temp. Phys. 40, 259 (2014).

  34. M. Mumtaz, S. Naeem, K. Nadeem, F. Naeem, A. Jabbar, Y.R. Zheng, N.A. Khan, and M. Imran, Solid Stat. Sci. 22, 21 (2013).

    Article  Google Scholar 

  35. J.C. Zhang, F.Q. Liu, G.S. Cheng, J.X. Shang, J.Z. Liu, S.X. Cao, and Z.X. Liu, Phys. Lett. A 201, 70 (1995).

    Article  Google Scholar 

  36. P.F. Miceli, J.M. Tarascon, L.H. Greene, H.P. Barbou, F.J. Rotella, and J.D. Jorgensen, Phys. Rev. B 37, 5932 (1988).

    Article  Google Scholar 

  37. S. Cao, L. Li, F. Liu, W. Li, C. Chi, C. Jing, and J. Zhang, Supercond. Sci. Technol. 18, 606 (2005).

    Article  Google Scholar 

  38. V.P.S. Awana, S.K. Malik, W.B. Yelon, C.A. Cardoso, O.F. de Lima, A. Gupta, A. Sedky, and A.V. Narlikar, Physica C 338, 197 (2000).

    Article  Google Scholar 

  39. E. Brecht, W.W. Schmahl, G. Miehe, M. Rodewald, H. Fuess, N.H. Andersen, J. Hanβmann, and Th. Wolf, Physica C 265, 53 (1996).

    Article  Google Scholar 

  40. A. Jabbar, I. Qasim, M. Mumtaz, M. Zubair, K. Nadeem, and A.A. Khurram, J. Appl. Phys. 115, 203904 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Higher Education Commission (HEC) of Pakistan for continuous financial support. We are also highly grateful to Dr. Nawazish A. Khan and Prof. Qiu Xiang-Gang for providing the characterization facilities at Material Science Laboratory, Department of Physics (QAU) Islamabad, Pakistan and Beijing National Laboratory of Condensed Matter Physics, Institute of Physics (IOP), Chinese Academy of Sciences (CAS) Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbar, A., Qasim, I., Waqee-ur-Rehman, M. et al. Structural and Superconducting Properties of (Al2O3) y /CuTl-1223 Composites. J. Electron. Mater. 44, 110–116 (2015). https://doi.org/10.1007/s11664-014-3405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3405-x

Keywords

Navigation