Skip to main content

Advertisement

Log in

Microwave Synthesis and Characterization of the Series Co1−x Fe x Sb3 High Temperature Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of microwave energy for materials processing has a major potential and real advantages over conventional heating such as (1) time and energy savings, (2) rapid heating rates (volumetric heating vs. conduction), (3) considerably reduced processing time and temperature, (4) fine microstructures and hence improved mechanical properties and better product performance, and (5) finally lower environmental impact. In this study, we investigated the use of microwave-assisted synthesis to synthesize a series of Co1−x Fe x Sb3 using this novel approach, which gave high quality materials with little or no impurities in a fraction of the time needed for conventional synthesis. X-ray diffraction analysis was used to examine the structure and the lattice parameters of the samples, while scanning electron microscopy with energy dispersive x-ray spectroscopy was used to study the morphology of the compounds. The samples were sintered by spark plasma sintering, and the highest ZT of 0.33 was obtained for x = 0.2 at 700 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Slack and V.G. Tsoukala, J. Appl. Phys. 76, 1665 (1994).

    Article  Google Scholar 

  2. J.W. Sharp, E.C. Jones, R.K. Williams, P.M. Martin, and B.C. Sales, J. Appl. Phys. 78, 1013 (1995).

    Article  Google Scholar 

  3. D.T. Morelli and G.P. Meisner, Phys. Rev. B 56, 7376 (1997).

    Article  Google Scholar 

  4. M. Martín-González, O. Caballero-Calero, and P. Díaz-Chao, Renew. Sustain. Energy Rev. 24, 288 (2013).

    Article  Google Scholar 

  5. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  6. G.S. Nolas, Annu. Rev. Mater. Sci. 29, 89 (1999).

    Article  Google Scholar 

  7. G.S. Nolas, Phys. Rev. B 58, 164 (1998).

    Article  Google Scholar 

  8. L.D. Chen, J. Mater. Res. 16, 3343 (2001).

    Article  Google Scholar 

  9. T. Caillat, J.-P. Fleurial, A. Borshchevsky, and J. Vandersande, Phys. Rev. B 51, 9622 (1995).

    Article  Google Scholar 

  10. G.S. Nolas, M.R. Kaeser, T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 51855–51857 (2000).

    Google Scholar 

  11. L. Nordström and D.J. Singh, Phys. Rev. B 53, 1103 (1996).

    Article  Google Scholar 

  12. Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, J. Alloys Compd. 315, 193 (2001).

    Article  Google Scholar 

  13. S.-C. Ur, J.-C. Kwon, and I.-H. Kim, J. Alloys Compd. 442, 358 (2007).

    Article  Google Scholar 

  14. I.-H. Kim and S.-C. Ur, Mater. Lett. 61, 2446 (2007).

    Article  Google Scholar 

  15. N. Dong, X. Jia, T.C. Su, F.R. Yu, Y.J. Tian, Y.P. Jiang, L. Deng, and H.A. Ma, J. Alloys Compd. 480, 882 (2009).

    Article  Google Scholar 

  16. C. Zhou, J. Sakamoto, D. Morelli, X. Zhou, and G. Wang, J. Appl. Phys. 109, 063722 (2001).

    Article  Google Scholar 

  17. S. Katsuyama, Y. Shichijo, M. Ito, K. Majima, and H. Nagai, J. Appl. Phys. 84, 6708 (1998).

    Article  Google Scholar 

  18. X. Zhang, Q.M. Lu, J.X. Zhang, Q. Wei, D.M. Liu, and Y.Q. Liu, J. Alloys Compd. 457, 368 (2008).

    Article  Google Scholar 

  19. J. Arreguin-Zavala, D. Vasilevskiy, S. Turenne, and R.A. Masut, J. Electron. Mater. 42, 1992 (2013).

    Article  Google Scholar 

  20. K. Biswas, S. Muir, and M.A. Subramanian, Mater. Res. Bull. 46, 2288 (2011).

    Article  Google Scholar 

  21. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  22. O. Boffoué, A. Jacquot, A. Dauscher, B. Lenoir, and M. Stölzer, Rev. Sci. Instrum. 76, 053907 (2005).

    Article  Google Scholar 

  23. M. Rotter, ed., 25th International Conference on Thermoelectrics (EEE-Cat-No.-06TH8931, Aug 6–10, 2006, Vienna, Austria).

  24. J. Peng, J. Yang, T. Zhang, X. Song, and Y. Chen, J Alloys Compd. 381, 313 (2004).

    Article  Google Scholar 

  25. J. Peng, J. Yang, X. Song, Y. Chen, S. Bao, and T. Zhang, Front. Mater. Sci. China 1, 177 (2007).

    Article  Google Scholar 

  26. X. Xia, P. Qiu, X. Huang, S. Wan, Y. Qiu, X. Li, and L. Chen, J. Electron. Mater. (2013). doi:10.1007/s11664-013-2820-8.

    Google Scholar 

  27. J.X. Zhang, Q.M. Lu, K.G. Liu, L. Zhang, and M.L. Zhou, Mater. Lett. 58, 1981 (2004).

    Article  Google Scholar 

  28. K.-H. Park, J.-Y. Jung, S.-C. Ur, and I.-H. Kim, Phys. Scr. T139, 014009 (2010).

    Article  Google Scholar 

  29. M.Y. Tafti, M. Saleemi, A. Jacquot, M. Jägle, M. Muhammed, and M.S. Toprak, Mater. Res. Soc. Symp. Proc. 1543 (2013). doi:10.1557/opl.2013.947.

Download references

Acknowledgement

This work was supported by the European Project “NEXTEC” FP7-NMP-201-1.2-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ioannidou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioannidou, A.A., Rull, M., Martin-Gonzalez, M. et al. Microwave Synthesis and Characterization of the Series Co1−x Fe x Sb3 High Temperature Thermoelectric Materials. J. Electron. Mater. 43, 2637–2643 (2014). https://doi.org/10.1007/s11664-014-3197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3197-z

Keywords

Navigation