Skip to main content
Log in

Dielectric Properties of Polypropylene-Based Nanocomposites with Ionic Liquid-Functionalized Multiwalled Carbon Nanotubes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocomposites were prepared from polypropylene (PP) and untreated multiwalled carbon nanotubes (MWCNTs) or MWCNTs surface-functionalized with ionic liquids (MIL), as fillers, and their dielectric properties were compared. The physical (cation–π/π–π) interaction between the ionic liquids and the MWCNTs was apparent from Raman spectroscopy and from thermogravimetric analysis. Morphology characterization revealed that ionic liquids improve the dispersibility of MWCNTs in the PP matrix. It is suggested that the substantial increase in the dielectric permittivity of the nanocomposites compared with that of the PP originates from a remarkable Maxwell–Wagner–Sillars (MWS) effect at percolation threshold where mobile charge carriers are blocked at internal interfaces between the MIL and the PP matrix. The high polarity of ionic liquids may reinforce the MWS effect, and the nonconducting organic groups of the ionic liquids promote the low loss tangent and low conductivity of the MIL/PP nanocomposites. Compared with MWCNTs/PP nanocomposites, lower loss tangent and higher dielectric permittivity were observed for MIL/PP nanocomposites, making the material more attractive for application in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Paul and L.M. Robeson, Polymer 49, 3187 (2008).

    Article  Google Scholar 

  2. Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.Q. Lei, Adv. Mater. 19, 852 (2007).

    Article  Google Scholar 

  3. C. Yang, Y.H. Lin, and C.W. Nan, Carbon 47, 1096 (2009).

    Article  Google Scholar 

  4. Y. Shen, Y.H. Lin, and C.W. Nan, Adv. Funct. Mater. 17, 2405 (2007).

    Article  Google Scholar 

  5. L. Qi, B.I. Lee, S.H. Chen, W.D. Samuels, and G.J. Exarhos, Adv. Mater. 17, 1777 (2005).

    Article  Google Scholar 

  6. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).

    Article  Google Scholar 

  7. S. Lee, E. Cho, S. Jeon, and J. Youn, Carbon 45, 2810 (2007).

    Article  Google Scholar 

  8. C.M. Homenick, G. Lawson, and A. Adronov, Polym. Rev. 47, 265 (2007).

    Article  Google Scholar 

  9. Y.L. Liu and W.H. Chen, Macromolecules 40, 8881 (2007).

    Article  Google Scholar 

  10. S. Qin, D. Qin, W.T. Ford, D.E. Resasco, and J.E. Herrera, Macromolecules 37, 752 (2004).

    Article  Google Scholar 

  11. R.D. Rogers and K.R. Seddon, Science 302, 792 (2003).

    Article  Google Scholar 

  12. P. Kubisa, Prog. Polym. Sci. 29, 3 (2004).

    Article  Google Scholar 

  13. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, and T. Aida, Science 300, 2072 (2003).

    Article  Google Scholar 

  14. J.C. Ma and D.A. Dougherty, Chem. Rev. 97, 1303 (1997).

    Article  Google Scholar 

  15. M.J. Park, J.K. Lee, B.S. Lee, Y.W. Lee, I.S. Choi, and S. Lee, Chem. Mater. 18, 1546 (2006).

    Article  Google Scholar 

  16. Y. Lei, C. Xiong, L. Dong, H. Guo, X. Su, J. Yao, J. You, D. Tian, and X. Shang, Small 3, 1889 (2007).

    Article  Google Scholar 

  17. L. Zhao, Y. Li, Z. Liu, and H. Shimizu, Chem. Mater. 22, 5949 (2010).

    Article  Google Scholar 

  18. S. Bellayer, J.W. Gilman, N. Eidelman, S. Bourbigot, X. Flambard, D.M. Fox, H.C.D. Long, and P.C. Trulove, Adv. Funct. Mater. 15, 910 (2005).

    Article  Google Scholar 

  19. H.B. Zhang, G.D. Lin, Z.H. Zhou, X. Dong, and T. Chen, Carbon 40, 2429 (2002).

    Article  Google Scholar 

  20. P. Tan, S.L. Zhang, K.T. Yue, and F.J. Huang, Raman Spectrosc. 28, 369 (1997).

    Article  Google Scholar 

  21. T. Fukushima and T. Aida, Chem. Eur. J. 13, 5048 (2007).

    Article  Google Scholar 

  22. J. Wang, H. Chu, and Y. Li, ACS Nano 2, 2540 (2008).

    Article  Google Scholar 

  23. K. Ahmad, W. Pan, and S.L. Shi, Appl. Phys. Lett. 89, 133122 (2006).

    Article  Google Scholar 

  24. C.W. Nan, Prog. Mater Sci. 37, 1 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Anhui Provincial Natural Science Foundation (no. 1308085QB40) and the Fundamental Research Funds for the Central Universities (nos 2013HGQC0016 and 2011HGBZ1323) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunsheng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Gui, H., Hu, Y. et al. Dielectric Properties of Polypropylene-Based Nanocomposites with Ionic Liquid-Functionalized Multiwalled Carbon Nanotubes. J. Electron. Mater. 43, 2754–2758 (2014). https://doi.org/10.1007/s11664-014-3195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3195-1

Keywords

Navigation