Skip to main content
Log in

Preparation of TiO2(B) Nanosheets by a Hydrothermal Process and Their Application as an Anode for Lithium-Ion Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

TiO2 nanosheets with single monoclinic phase have been synthesized by a hydrothermal method using 6 M NaOH aqueous solution at 180°C. TiO2 nanosheets exhibited surface area of 100 m2 g−1, which is larger than those obtained by solid-state reaction. The capability of lithium-ion batteries could be strongly enhanced by TiO2(B) nanosheets to yield discharge capacity higher than 200 mAh g−1, even upon 25 cycles of 0.1-C-rate discharge–charge operations, showing highly reversible capacity and good cycling stability with excellent capacity retention of 96% with water-based binder. The results suggest that TiO2(B) nanosheets could be a promising negative electrode material for use in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.G. Guo, J.S. Hu, and L.J. Wan, Adv. Mater. 20, 2878 (2008).

    Article  Google Scholar 

  2. C.H. Jiang, E. Hosono, and H.S. Zhou, Nano Today 1, 28 (2006).

    Article  Google Scholar 

  3. Y. Yu, X. Wang, H. Sun, and M. Ahmad, RSC Adv. 2, 7901 (2012).

    Article  Google Scholar 

  4. J.S. Chen and X.W. Lou, Mater. Today 15, 246 (2012).

    Article  Google Scholar 

  5. J. Chen, L. Yang, S. Fang, and Y. Tang, Electrochim. Acta 55, 6596 (2010).

    Article  Google Scholar 

  6. X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, and G. Shen, Sci. Rep. 3, 2007 (2013).

    Google Scholar 

  7. J.H. Lee, M.H. Hon, Y.W. Chung, and I.C. Leu, Appl. Phys. A 102, 3 (2011).

    Google Scholar 

  8. S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, and W.V. Schalkwijk, Nat. Mater. 4, 366 (2005).

    Article  Google Scholar 

  9. D.W. Murphy, R.J. Cava, S.M. Zahurak, and A. Santoro, Solid State Ion. 413, 9 (1983).

    Google Scholar 

  10. A.R. Armstrong, G. Armstrong, J. Canales, and P.G. Bruce, Angew. Chem. Int. Ed. 43, 2286 (2004).

    Article  Google Scholar 

  11. G. Armstrong, A.R. Armstrong, J. Canales, and P.G. Bruce, Chem. Commun. 19, 2454 (2005).

    Article  Google Scholar 

  12. A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P.G. Bruce, Adv. Mater. 17, 862 (2005).

    Article  Google Scholar 

  13. J. Zhu, J. Zhang, F. Chen, and M. Anpo, Mater. Lett. 59, 3378 (2005).

    Article  Google Scholar 

  14. G. Wang, Q. Wang, L. Wu, and J. Li, J. Phys. Chem. B 110, 22029 (2006).

    Article  Google Scholar 

  15. X. Su, Q.L. Wu, X. Zhan, J. Wu, S. Wei, and Z. Guo, J.␣Mater. Sci. 47, 2519 (2012).

    Article  Google Scholar 

  16. G. Armstrong, A.R. Armstrong, J. Canales, and P.G. Bruce, Electrochem. Solid State Lett. 9, A139 (2006).

    Article  Google Scholar 

  17. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater. 11, 1307 (1999).

    Article  Google Scholar 

  18. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998).

    Article  Google Scholar 

  19. G. Xiang, T. Li, J. Zhuang, and X. Wang, Chem. Commun. 46, 6801 (2010).

    Article  Google Scholar 

  20. M.G. Choi, Y.G. Lee, S.W. Song, and K.M. Kim, Electrochim. Acta 55, 5975 (2010).

    Article  Google Scholar 

  21. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, and F.C. Walsh, J. Mater. Chem. 14, 3370 (2004).

    Article  Google Scholar 

  22. Z. Chang, J. Liu, J. Liu, and X. Sun, J. Mater. Chem. 21, 277 (2011).

    Article  Google Scholar 

  23. N. Masaki, S. Uchida, H. Yamane, and T. Sato, Chem. Mater. 14, 419 (2002).

    Article  Google Scholar 

  24. T. Sasaki, F. Kooli, M. Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B.C. Chakoumakos, and M. Watanabe, Chem. Mater. 10, 4123 (1998).

    Article  Google Scholar 

  25. M. Wei, Y. Konishi, H. Zhou, H. Sugihara, and H. Arakawa, Solid State Commun. 133, 493 (2005).

    Article  Google Scholar 

  26. D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Adv. Mater. 18, 1 (2006).

    Article  Google Scholar 

  27. Q. Chen, G.H. Du, S. Zhang, and L.M. Peng, Acta Crystallogr. Sect. B B58, 587 (2002).

    Article  Google Scholar 

  28. T.P. Feist and P.K. Davies, J. Solid State Chem. 101, 275 (1992).

    Article  Google Scholar 

  29. X. Sun and Y. Li, Chem. Eur. J. 9, 2229 (2003).

    Article  Google Scholar 

  30. V. Subramanian, A. Karki, K.I. Gnanasekar, F.P. Eddy, and B. Rambabu, J. Power Sources 159, 186 (2006).

    Article  Google Scholar 

  31. M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, and M. Graetzel, Chem. Mater. 17, 1248 (2005).

    Article  Google Scholar 

  32. Q. Wang, Z.H. Wen, and J.h Li, Inorg. Chem. 45, 17 (2006).

    Article  Google Scholar 

  33. S. Dong, H. Wang, L. Gu, X. Zhou, Z. Liu, P. Ha, Y. Wang, X. Chen, G. Cui, and L. Chen, Thin Solid Films 519, 5978 (2011).

    Article  Google Scholar 

  34. H. Zhang, G.R. Li, L.P. An, T.Y. Yan, X.P. Gao, and H.Y. Zhu, J. Phys. Chem. C 111, 6143 (2007).

    Article  Google Scholar 

  35. R.B. Khomane, J. Colloid Interface Sci. 356, 369 (2011).

    Article  Google Scholar 

  36. Q. Wang, Z. Wen, and J. Li, Inorg. Chem. 45, 6944 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ing-Chi Leu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HY., Hon, MH., Kuan, CY. et al. Preparation of TiO2(B) Nanosheets by a Hydrothermal Process and Their Application as an Anode for Lithium-Ion Batteries. J. Electron. Mater. 43, 1048–1054 (2014). https://doi.org/10.1007/s11664-013-2951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2951-y

Keywords

Navigation