Skip to main content
Log in

Ge-ZnSSe Spatial Wavefunction Switched (SWS) FETs to Implement Multibit SRAMs and Novel Quaternary Logic

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper describes novel multibit static random-access memories (SRAMs) implemented using four-channel spatial wavefunction switched field-effect transistors (SWS FETs) with Ge quantum wells and ZnSSe barriers. A two-bit SRAM cell consists of two back-to-back connected four-channel SWS FETs, where each SWS FET serves as a quaternary inverter. This architecture results in a reduction of the field-effect transistor (FET) count by 75% and data interconnect density by 50%. The designed two-bit SRAM cell is simulated using Berkeley short-channel insulated-gate field-effect transistor equivalent-channel models (for 25-nm FETs). In addition, the binary interface logic and conversion circuitry are designed to integrate the SWS SRAM technology. Our motivation is to stack up multiple bits on a single SRAM cell without multiplying the transistor count. The concept of spatial wavefunction switching (SWS) in the FET structure has been verified experimentally for two- and four-well structures. Quantum simulations exhibiting SWS in four-well Ge SWS FET structures, using the ZnSe/ZnS/ZnMgS/ZnSe gate insulator, are presented. These structures offer higher contrast than Si-SiGe SWS FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Jain, J. Chandy, and E. Heller, Int. J. High Speed Electron. Syst. 20, 641–652 (2011).

    Article  CAS  Google Scholar 

  2. F.C. Jain, B. Miller, E. Suarez, P.-Y. Chan, S. Karmakar, F. Al-Amoody, M. Gogna, J. Chandy, and E. Heller, J. Electron. Mater. 40, 1717–1726 (2011).

    Article  CAS  Google Scholar 

  3. El.-Sayed. Hasaneen, E. Heller, R. Bansal, and F. Jain, Solid State Electron. 48, 2055–2059 (2004).

    Article  CAS  Google Scholar 

  4. P. Gogna, M. Lingalugari, J. Chandy, F.C. Jain, E. Heller, and E. Hasaneen, Lester Eastman Conference on High Performance Devices (LEC), IEEE Conference Publication (Piscataway, NJ: IEEE, 2012).

  5. M. Farrens, G. Tyson, and A.R. Pleszkun, Proceedings of the 21st Annual International Symposium on Computer Architecture (Piscataway, NJ: IEEE, 1994), pp. 338–347.

  6. H. Wang, T. Sun, and Q. Yang, IEEE Trans. Comput. 46, 1187–1201 (1997).

    Article  Google Scholar 

  7. H. Shirahama and T. Hanyu, Proceedings of the 38th International Symposium on Multiple Valued Logic (Piscataway, NJ: IEEE, 2008), pp. 8–13.

  8. A. Srivastava and H.N. Venkata, Integr. VLSI J. 36, 87–101 (2003).

    Article  Google Scholar 

  9. K.W. Current, IEEE J. Solid State Circuits 29, 95–107 (1994).

    Article  Google Scholar 

  10. J.T. Butler, IEEE Computer Society Press Technology Series (Piscataway, NJ: IEEE, 1991).

  11. E. Dubrova, 17th NORCHIP Conference (Piscataway, NJ: IEEE, 1999), pp. 340–349.

  12. The VIS Group: Proceedings of the 8th International Conference on Computer Aided Verification, Springer Lecture Notes in Computer Science, ed. R. Alur and T. Henzinger (Heidelberg: Springer, 1996), pp. 428–432.

  13. R.K. Brayton and S.P. Khatri, 12th International Conference on VLSI Design (Piscataway, NJ: IEEE, 1999), pp. 196–206.

  14. I. Jahangir, A. Das, and M. Hasan, CoRR, 1108, 5497 (2011). http://arxiv.org/abs/1009.2622. Accessed 23 Sept 2013

  15. T. Hanyu, IEEE Proc. Circuits Devices Syst. 143, 331–336 (1996).

    Article  Google Scholar 

  16. K.S. Vasundara Patel and K.S. Gurumurthy, Int. J. Comput. Theory Eng. 2, 1793 (2010).

    Google Scholar 

  17. X.W. Wu, IEEE Proc. Circuits Devices Syst. 137, 21–27 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-C. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogna, P., Suarez, E., Lingalugari, M. et al. Ge-ZnSSe Spatial Wavefunction Switched (SWS) FETs to Implement Multibit SRAMs and Novel Quaternary Logic. J. Electron. Mater. 42, 3337–3343 (2013). https://doi.org/10.1007/s11664-013-2762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2762-1

Keywords

Navigation