Skip to main content
Log in

Numerical Simulation and Analytical Modeling of InAs nBn Infrared Detectors with p-Type Barriers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents finite-element one-dimensional numerical simulations and analytical modeling for ideal (diffusion current only) nBn detectors with p-type barrier layers. The simulations show that the current–voltage J(V) and the dynamic resistance versus voltage R D(V) relations, both dark and illuminated, are in excellent agreement with the equations for ideal back-to-back photodiodes. We present a depletion approximation model for the nBn detector, analogous to that for the conventional pn junction photodiode, based on new boundary conditions on the hole concentrations versus voltage at the edges of the nBn barrier layer. We show that these nBn boundary conditions are identical to those for ideal back-to-back photodiodes, justifying the applicability of back-to-back photodiode equations to describe the ideal nBn detector. The simulations for the space-charge regions show a low-bias-voltage regime and a high-bias-voltage regime. The integrated space-charge densities in the layers adjacent to the barrier layer vary linearly with bias voltage. Negative dynamic resistance occurs because the bias voltage changes the effective thickness of the thin-base layers that generate diffusion current. We present a new formulation of the model for ideal back-to-back photodiodes with a more elegant and transparent set of equations for J(V) and R D(V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Maimon and G. Wicks, Appl. Phys. Lett. 89, 151109 (2006).

    Article  Google Scholar 

  2. P. Klipstein, U.S. Patent 7,795,640 (14 Sept. 2010); Foreign Application Priority Data July 2, 2003.

  3. J.R. Pedrazzani, S. Maimon, and G.W. Wicks, Electron. Lett. 44, 1487 (2008).

    Article  CAS  Google Scholar 

  4. P. Klipstein, SPIE Proc. Ser. 6940, 69402U (2008).

    Article  Google Scholar 

  5. P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, SPIE Proc. Ser. 7608, 76081V (2010).

    Article  Google Scholar 

  6. P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowitz, O. Magen, I. Shtrichman, and E. Weiss, SPIE Proc. Ser. 7660, 76602Y (2010).

    Article  Google Scholar 

  7. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, M. Brumer, M. Yassen, D. Aronov, E. Berkowicz, A. Glozman, T. Fishman, O. Magen, I. Shtrichman, and E. Weiss, SPIE Proc. Ser. 8012, 80122R (2011).

    Article  Google Scholar 

  8. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, Opt. Eng. 50, 061002 (2011).

    Article  Google Scholar 

  9. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, M. Yassen, D. Aronov, E. Berkowitz, A. Glozman, O. Magen, I. Shtrichman, R. Frenkel, and E. Weiss, SPIE Proc. Ser. 8268, 82680U (2012).

    Google Scholar 

  10. I. Shtrichman, D. Aronov, M. ben Ezra, I. Barkai, E. Berkowicz, M. Brumer, R. Fraenkel, A. Glozman, S. Grossman, E. Jacobsohn, O. Klin, P. Klipstein, I. Lukomsky, L. Shkedy, N. Snapi, M. Yassen, and E. Weiss, SPIE Proc. Ser. 8353, 83532Y (2012).

    Google Scholar 

  11. J.F. Klem, J.K. Kim, M.J. Cich, S.D. Hawkins, T.R. Fortune, and J.L. Rienstra, SPIE Proc. Ser. 7608, 76081P (2010).

    Article  Google Scholar 

  12. M.A. Kinch, H.F. Schaake, R.L. Strong, P.K. Liao, M.J. Ohlson, J. Jacques, C.-F. Wan, D. Chandra, R.D. Burford, and C.A. Schaake, SPIE Proc. Ser. 7660, 76602V (2010); see “Addendum: nBn Architecture” for a comparison between the InAsSb nBn and HgCdTe.

  13. A. Khoshakhlagh, S. Myers, E. Plis, M.N. Kutty, B. Klein, N. Gautam, H. Kim, E.P.G. Smith, D. Rhiger, S.M. Johnson, and S. Krishna, SPIE Proc. Ser. 7660, 76602Z (2010).

    Article  Google Scholar 

  14. S.A. Myers, A. Khoshakhlagh, J. Mailfert, P. Wanninkhof, E. Plis, M.N. Kutty, H.S. Kim, N. Gautam, B. Klein, E.P.G. Smith, and S. Krishna, SPIE Proc. Ser. 7808, 780805-1 (2010).

    Google Scholar 

  15. E. Plis, S. Myers, M.N. Kutty, J. Mailfert, E.P. Smith, S. Johnson, and S. Krishna, Appl. Phys. Lett. 97, 123503 (2010). See also: E.A. Plis, S. Myers, M.N. Kutty, J. Mailfert, E.P. Smith, S. Johnson, and S. Krishna, SPIE Proc. Ser. 7945, 79451R (2011).

    Google Scholar 

  16. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, S. Maimon, and G.W. Wicks, SPIE Proc. Ser. 8012, 80122T (2011).

    Article  Google Scholar 

  17. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, S. Maimon, and G.W. Wicks, Appl. Phys. Lett. 99, 121112 (2011).

    Article  Google Scholar 

  18. Demonstrated by Santa Barbara Focal Plane at the SPIE Exhibit, Baltimore, Maryland, April 23–27, 2012.

  19. E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P.C. Klipstein, A. Fraenkel, and I. Shtrichman, J. Cryst. Growth 339, 31 (2012).

    Article  CAS  Google Scholar 

  20. A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P.S. Wijewarnasuriya, and C. Grein, SPIE Proc. Ser. 8353, 835333 (2012).

    Article  Google Scholar 

  21. A.I. D’Souza, E. Robinson, A.C. Ionescu, T.J. de Lyon, R.D. Rajavel, H. Sharifi, N. Dhar, P.S. Wijewarnasuriya, and C. Grein, J. Electron. Mater. 42, this issue (2013).

  22. J. Schuster, C.A. Keasler, M. Reine, and E. Bellotti, J. Electron. Mater. 41, 2981 (2012).

    Article  CAS  Google Scholar 

  23. J. Schuster, B. Pinkie, M. Reine, and E. Bellotti, SPIE Proc. Ser. 8353, 835330 (2012).

    Article  Google Scholar 

  24. J.R. Pedrazzani (PhD Thesis, University of Rochester, 2010).

  25. A.M. White, U.S. Patent 4,679,063 (2 July 1987).

  26. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5816 (2001).

    Article  Google Scholar 

  27. Sentaurus Device User Guide (Synopsys, Version G-2012.06, June 2012).

  28. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).

    Article  CAS  Google Scholar 

  29. D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008).

    Article  Google Scholar 

  30. E.S. Rittner, Photoconductivity Conference, ed. R.G. Breckenridge, B.R. Russell, and E.E. Hahn (New York: Wiley, 1956), pp. 215–268.

  31. M. Reine, A. Sood, and T. Tredwell, Mercury Cadmium Telluride, Semiconductors and Semimetals, Vol. 18, Chap. 6, ed. R.K. Willardson and A.C. Beer (New York: Academic, 1981), pp. 201–312.

  32. M.B. Reine, Infrared Detectors and Emitters: Materials and Devices, ed. P. Capper and C.T. Elliott (Boston, Kluwer Academic, 2001), pp. 313–376.

  33. T.N. Casselman, D.T. Walsh, J.M. Myrosznyk, K. Kosai, W.A. Radford, E.F. Schultz and O.K. Wu, Extended Abstracts for the 1990 U.S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and Novel Detector Materials, San Francisco, California, October 2–4, 1990.

  34. E.F. Schulte, U.S. Patent 5,113,076 (12 May 1992).

  35. J.A. Wilson, B.A. Patten, G.R. Chapman, K. Kosai, B. Baumgratz, P. Goetz, S. Tighe, R. Risser, R. Herald, W.A. Radford, T. Tung, and W.A. Terre, SPIE Proc. Ser. 2274, 117 (1994).

    Article  CAS  Google Scholar 

  36. J.M. Arias, M. Zandian, G.M. Williams, E.R. Blazejewski, R.E. DeWames, and J.G. Pasko, J. Appl. Phys. 70, 4620 (1991).

    Google Scholar 

  37. E.R. Blazejewski, J.M. Arias, G.M. Williams, W. McLevige, M. Zandian, and J. Pasko, J. Vac. Sci. Technol. B10, 1626 (1992).

    Google Scholar 

  38. K. Kosai, J. Electron. Mater. 24, 635 (1995).

    Article  CAS  Google Scholar 

  39. R.E. DeWames and J.G. Pellegrino, J. Electron. Mater. 42, this issue (2013).

  40. B. Pinkie and E. Bellotti, J. Electron. Mater. 42, this issue (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Reine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reine, M., Schuster, J., Pinkie, B. et al. Numerical Simulation and Analytical Modeling of InAs nBn Infrared Detectors with p-Type Barriers. J. Electron. Mater. 42, 3015–3033 (2013). https://doi.org/10.1007/s11664-013-2685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2685-x

Keywords

Navigation