Skip to main content
Log in

PIN-PMN-PT Single-Crystal-Based 1–3 Piezoelectric Composites for Ultrasonic Transducer Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal/epoxy 1–3 composites with different thicknesses (400 μm to 825 μm) were fabricated using the conventional dice-and-fill method. Their properties were compared with the corresponding lead zirconate titanate (PZT) ceramic 1–3 composites. Excellent properties for ultrasonic transducer applications have been achieved, such as high electromechanical coupling coefficient (k t ≈ 78% to 83%), high piezoelectric strain coefficient (d 33 ≈ 1000 pm/V), and lower acoustic impedance (Z ≈ 20 Mrayl). The strain levels of PIN-PMN-PT composites were almost constant (1000 pm/V) with decreasing thickness, being much higher than those of PZT composites (650 pm/V). However, an increase in strain hysteresis was observed with decreasing thickness, reaching 25.3% for the 400-μm single-crystal 1–3 composite, which is lower than the corresponding PZT composites (44.1% for 350-μm PZT ceramic 1–3 composite). These results show that PIN-PMN-PT single-crystal 1–3 composites have great potential for use in advanced ultrasound transducer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-E. Park and T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997).

    Article  Google Scholar 

  2. S.-E. Park and T.R. Shrout, J. Appl. Phys. 82, 1804 (1997).

    Article  CAS  Google Scholar 

  3. S. Saitoh, T. Takeuchi, T. Kobayashi, K. Harada, S. Shimanuki, and Y. Yamashita, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46, 414 (1999).

    Article  CAS  Google Scholar 

  4. S.J. Zhang, C.A. Randall, and T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 564 (2005).

    Article  Google Scholar 

  5. G.S. Xu, K. Chen, D.F. Yang, and J.B. Li, Appl. Phys. Lett. 90, 032901 (2007).

    Article  Google Scholar 

  6. X.Z. Liu, S.J. Zhang, J. Luo, T.R. Shrout, and W.W. Cao, J. Appl. Phys. 106, 074112 (2009).

    Article  Google Scholar 

  7. Y. Hosono, Y. Yamashita, H. Sakamoto, and N. Ichinose, Jpn. J. Appl. Phys. 42, 5681 (2003).

    Article  CAS  Google Scholar 

  8. T. Karaki, M. Nakamoto, Y. Sumiyoshi, M. Adachi, Y. Hosono, and Y. Yamashita, Jpn. J. Appl. Phys. 42, 6059 (2003).

    Article  CAS  Google Scholar 

  9. J. Tian, P.D. Han, X.L. Huang, and H.X. Pan, Appl. Phys. Lett. 91, 222903 (2007).

    Article  Google Scholar 

  10. X.A. Wang, Z. Xu, Z.R. Li, F. Li, H.B. Chen, and S.J. Fan, Ferroelectrics 401, 173 (2010).

    Article  CAS  Google Scholar 

  11. P. Sun, Q.F. Zhou, B.P. Zhu, D.W. Wu, C.H. Hu, J.M. Cannata, J. Tian, P.D. Han, G.F. Wang, and K.K. shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2760 (2009).

    Article  Google Scholar 

  12. R.E. Newnham, L.J. Bowen, K.A. Klicker, and L.E. Cross, Mater. Des. 2, 93 (1980).

    Article  CAS  Google Scholar 

  13. W.A. Smith, IEEE Ultrasonics Symposium Proceedings, vol. 755 (Montreal, Quebec Canada, 1989).

  14. X.C. Geng and Q.M. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 857 (1997).

    Article  Google Scholar 

  15. T. Ritter, X.C. Geng, K.K. Shung, P.D. Lopath, S.-E. Park, and T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 792 (2000).

    Article  CAS  Google Scholar 

  16. X. Jiang, K. Snook, J. Welter, W. S. Hackenberger, and X.C. Geng, IEEE International Ultrasonic Symposium Proceedings, vol. 164 (Beijing, China, 2008).

  17. J. Yuan, S. Rhee, and X. Jiang, IEEE International Ultrasonic Symposium Proceedings, vol. 682 (Beijing, China, 2008).

  18. H.J. Lee, S.J. Zhang, and T.R. Shrout, J. Appl. Phys. 107, 124107 (2010).

    Article  Google Scholar 

  19. H.J. Lee, S.J. Zhang, J. Luo, F. Li, and T.R. Shrout, Adv. Funct. Mater. 20, 3154 (2010).

    Article  CAS  Google Scholar 

  20. D. Zhou, K.F. Cheung, K.H. Lan, Y. Chen, Y.C. Chiu, J.Y. Dai, H.L.W. Chan, and H.S. Luo, Rev. Sci. Instrum. 82, 055110 (2011).

    Article  Google Scholar 

  21. H.P. Savakus, K.A. Klicker, and R.E. Newnham, Mater. Res. Bull. 16, 677 (1981).

    Article  CAS  Google Scholar 

  22. J.J. Gao, Z. Xu, F. Li, C.H. Zhang, Y. Liu, G.M. Liu, and H.L. He, Appl. Phys. Lett. 99, 062903 (2011).

    Article  Google Scholar 

  23. IEEE Standard on piezoelectricity, ANSI/IEEE Standard (1987) 176.

  24. P. Marin-Franch, I. Pettigrew, M. Parker, K.J. Kirk, and S. Cochran, Insight 46, 653 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Xu, Z., Xia, S. et al. PIN-PMN-PT Single-Crystal-Based 1–3 Piezoelectric Composites for Ultrasonic Transducer Applications. J. Electron. Mater. 42, 2564–2569 (2013). https://doi.org/10.1007/s11664-013-2627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2627-7

Keywords

Navigation