Skip to main content
Log in

Sequential Evaporation of Bi-Te Thin Films with Controllable Composition and Their Thermoelectric Transport Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report a simplified sequential evaporation route that can deposit compositionally controllable Bi-Te thermoelectric (TE) thin films without the need for a highly controlled facility. Te and Bi granules were used as starting materials, with their ratio being adjusted to obtain Bi-Te films with different compositions and thicknesses. The as-evaporated and annealed films were subjected to structural and morphological analysis, and their transport properties were measured. X-Ray diffraction data revealed multiple phases for most films. Energy-dispersive x-ray spectroscopy showed that the film composition was Te-enriched due to the large vapor pressure difference of Te and Bi. A Bi2Te3 single phase was obtained in the annealed films, having nominal composition of BiTe1.2. The existence of impurity phases, such as Bi4Te3 or elemental Te, was found in all the as-evaporated films and in the annealed films with other nominal Te/Bi ratios, which degraded the TE properties of the films by increasing their electrical conductivity and reducing their Seebeck coefficient. A pure Bi2Te3 film with nominal Te/Bi ratio of 1.2 exhibited a maximum power factor of 7.9 × 10−4 W m−1 K2 after annealing at 200°C. This work demonstrated a simple, undemanding, reliable method to deposit Bi-Te-based TE thin films that can be utilized to fabricate low-cost TE microgenerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Service, Science 306, 806 (2004).

    Article  CAS  Google Scholar 

  2. B.C. Sales, Science 295, 1248 (2002).

    Article  CAS  Google Scholar 

  3. N.S. Hudak and G.G. Amatucci, J. Appl. Phys. 103, 101301 (2008).

    Article  Google Scholar 

  4. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  5. W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, J. Microelectromech. S. 18, 763 (2009).

    Article  CAS  Google Scholar 

  6. L.M. Goncalves, P. Alpuim, and J.H. Correia, J. Electron. Mater. 39, 1516 (2010).

    Article  CAS  Google Scholar 

  7. S.B. Schaevitz (Master’s thesis, Massachusetts Institute of Technology, 2000).

  8. M. Shiozaki, S. Sugiyama, N. Watanabe, H. Ueno and K. Itoigawa, 19th IEEE Int. Conf. Microelectromech. Sys., Istanbul: IEEE, 2006, pp. 946–949.

  9. L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Volklein, and J.H. Correia, Thin Solid Films 518, 2816 (2010).

    Article  CAS  Google Scholar 

  10. M. Oh, S.J. Jeon, H. Jeon, S. Hyun, and H.J. Lee, J. Electron. Mater. 41, 60 (2012).

    Article  CAS  Google Scholar 

  11. R.S. Makala, K. Jagannadham, and B.C. Sales, J. Appl. Phys. 94, 3907 (2003).

    Article  CAS  Google Scholar 

  12. A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Foucaran, and A. Boyer, J. Cryst. Growth 194, 336 (1998).

    Article  CAS  Google Scholar 

  13. S.H. Li, M.S. Toprak, H.M.A. Soliman, J. Zhou, M. Muhammed, D. Platzek, and E. Muller, Chem. Mater. 18, 3627 (2006).

    Article  CAS  Google Scholar 

  14. L.M.Goncalves, C.Couto, J.H.Correia, P.Alpuim, Gao Min and D.M.Rowe, Proc. 4th Europ. Thermoelect. Conf., Cardiff, 2006, pp. 1–4.

  15. L.M. Goncalves, P. Alpuim, G. Min, D.M. Rowe, C. Couto, and J.H. Correia, Vacuum 82, 1499 (2008).

    Article  CAS  Google Scholar 

  16. J. Dheepa, R. Sathyamoorthy, and S. Velumani, Mater. Charact. 58, 782 (2007).

    Article  CAS  Google Scholar 

  17. M. Takashiri, T. Shirakawa, K. Miyazaki, and H. Tsukamoto, J. Alloy Compd. 441, 246 (2007).

    Article  CAS  Google Scholar 

  18. M. Takashiri, K. Miyazaki, and H. Tsukamoto, Thin Solid Films 516, 6336 (2008).

    Article  CAS  Google Scholar 

  19. X.K. Duan and Y.Z. Jiang, Appl. Surf. Sci. 256, 7365 (2010).

    Article  CAS  Google Scholar 

  20. X.K. Duan and Y.Z. Jiang, Thin Solid Films 519, 3007 (2011).

    Article  CAS  Google Scholar 

  21. M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki and H. Tsukamoto, J. Appl. Phys., 101, (2007).

  22. X. Duan, J. Yang, W. Zhu, X.A. Fan, and S.Q. Bao, J. Phys. D 39, 5064 (2006).

    Article  CAS  Google Scholar 

  23. A. Taylor, C. Mortensen, R. Rostek, N. Nguyen, and D.C. Johnson, J. Electron. Mater. 39, 1981 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, A.J., Feng, L.D., Cui, H.G. et al. Sequential Evaporation of Bi-Te Thin Films with Controllable Composition and Their Thermoelectric Transport Properties. J. Electron. Mater. 42, 2184–2191 (2013). https://doi.org/10.1007/s11664-013-2568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2568-1

Keywords

Navigation