Skip to main content
Log in

Resistive Switching in a Printed Nanolayer of Poly(4-vinylphenol)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Resistive switching in organic resistive switches fabricated with a sandwich structure of indium tin oxide (ITO)-coated polyethylene terephthalate (PET)/poly(4-vinylphenol) (PVP)/silver (Ag) is reported. A single layer of PVP was used as an active layer in the sandwich structure between the two electrodes. The active layer of the polymer was atomized with the electrohydrodynamic atomization technique on the ITO-coated PET. The film thickness of the PVP polymeric layer on the ITO-coated PET was measured to be 110 nm. The surface morphology was characterized by field-emission scanning electron microscopy, and the purity of the film was examined by x-ray photoelectron spectroscopy analysis. Electrical current–voltage (IV) measurements confirmed the memristive behavior of the sandwich device. The effect of the current compliance (CC) on resistive switching in the fabricated sandwich structure was also explored. The PVP-based organic resistive switch showed a CC-dependent OFF/ON ratio and memory window. Resistive switching memory effects were prominent at low CC up to nanoamps. The as-fabricated device was operated with low operational voltages for both polarities with OFF/ON ratio greater than 100:1. The robustness of the fabricated memristor was checked with multiple voltage sweeps, and the retention time is reported to be over 100 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Lee and Y. Chen, Mater. Res. Bull. 37, 144 (2012).

    Article  CAS  Google Scholar 

  2. Q.-D. Ling, D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, and K.-G. Neoh, Prog. Polym. Sci. 33, 917 (2008).

    Article  CAS  Google Scholar 

  3. S. Paul, A. Kanwal, and M. Chhowalla, Nanotechnology 17, 145 (2006).

    Article  CAS  Google Scholar 

  4. H. Ha and O. Kim, IEEE Electron Device Lett. 31, 368 (2010).

    Article  CAS  Google Scholar 

  5. Y. Ji, B. Cho, S. Song, T.W. Kim, M. Choe, Y.H. Kahng, and T. Lee, Adv. Mater. 22, 3071 (2010).

    Article  CAS  Google Scholar 

  6. S. Song, B. Cho, Y. Ji, and T. Lee, AIP Conf. Proc. 1399, 855 (2011).

    Article  CAS  Google Scholar 

  7. M.A. Mamo, W.S. Machado, W.A.L.V. Otterlo, N.J. Coville, and I.A. Hummelgen, Org. Electron. 11, 1858 (2010).

    Article  CAS  Google Scholar 

  8. A. Jaworek, Powder Technol. 176, 18 (2007).

    Article  CAS  Google Scholar 

  9. S.R. Samarasinghe, I. Pastoriza-Santos, M.J. Edirisinghe, and L.M. Liz-Marzan, Appl. Phys. A 91, 141 (2008).

    Article  CAS  Google Scholar 

  10. N.M. Muhammad, S. Sundharam, H.-W. Dang, A. Lee, B.-H. Ryu, and K.-H. Choi, Curr. Appl. Phys. 11, S68 (2011).

    Article  Google Scholar 

  11. M. Cloupeau and B. Prunet-Foch, J. Electrostat. 25, 165 (1990).

    Article  CAS  Google Scholar 

  12. N.M. Muhammad, A.M. Naeem, N. Duraisamy, D.S. Kim, and K.-H. Choi, Thin Solid Films 520, 1751 (2012).

    Article  CAS  Google Scholar 

  13. K. Rahman, A. Khan, N.M. Nam, K.-H. Choi, and D.S. Kim, Int. J. Precis. Eng. Manuf. 12, 663 (2011).

    Article  Google Scholar 

  14. R.P.A. Hartman (Ph.D. thesis, TU Delft, 1998).

  15. A. Jaworek and A. Krupa, J. Aerosol Sci. 30, 873 (1999).

    Article  CAS  Google Scholar 

  16. K.H. Choi, N. Duraisamy, N.M. Muhammad, I. Kim, H. Choi, and J. Jo, Appl. Phys. A 107, 715 (2012).

    Article  CAS  Google Scholar 

  17. N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, and K.H. Choi, Curr. Appl. Phys. 13, 90 (2013).

    Article  Google Scholar 

  18. N. Duraisamy, N.M. Muhammad, A. Ali, J. Jo, and K.H. Choi, Mater. Lett. 83, 80 (2012).

    Article  CAS  Google Scholar 

  19. K.H. Choi, M. Mustafa, K. Rahman, B.K. Jeong, and Y.H. Doh, Appl. Phys. A 106, 165 (2012).

    Article  CAS  Google Scholar 

  20. N. Duraisamy, N.M. Muhammad, H.C. Kim, J.D. Jo, and K.H. Choi, Thin Solid Films 520, 5070 (2012).

    Article  CAS  Google Scholar 

  21. K.H. Choi and M.N. Awais, J. Korean Phys. Soc. 61, 119 (2012).

    Article  CAS  Google Scholar 

  22. M.N. Awais, M.M. Nauman, N. Duraisamy, H.C. Kim, J. Jo, and K.H. Choi, Microelectron. Eng. 103, 167 (2013).

    Article  CAS  Google Scholar 

  23. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.G. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715-1 (2005).

    Google Scholar 

  24. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, and R.S. Williams, Nanotechnology 20, 215201-1 (2009).

    Google Scholar 

  25. N.G. Hackett, B. Hamadani, B. Dunlap, J. Suehle, C. Richter, C. Hacker, and D. Gundlach, IEEE Electron Device Lett. 30, 706 (2009).

    Article  Google Scholar 

  26. L.F. Pender and R.J. Fleming, J. Appl. Phys. 46, 3426 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awais, M.N., Choi, K.H. Resistive Switching in a Printed Nanolayer of Poly(4-vinylphenol). J. Electron. Mater. 42, 1202–1208 (2013). https://doi.org/10.1007/s11664-013-2560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2560-9

Keywords

Navigation