Skip to main content
Log in

The Role of the Nickel Catalyst and Its Chemical and Structural Evolution During Carbon Nanopearl Growth

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The role of the nickel catalyst size and its chemical and structural evolution during the early stages of carbon nanopearl nucleation and growth, by chemical vapor deposition from acetylene/argon mixture, were investigated and correlated with the resulting nanopearls’ morphological and structural properties. Carbon nanopearls were grown using Ni nanoparticles that were 20 nm and 100 nm in size, at a growth temperature of 850°C, for the following growth times: 10 s, 30 s, 60 s, 90 s, 120 s, and 300 s. x-Ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy were performed on the carbon nanopearl samples. The x-ray diffraction and x-ray photoelectron spectra showed that the following chemical constituents were present during the growth of carbon nanopearls: NiO, Ni2O3, Ni3C, Ni, CO, and C (both amorphous and graphite). Transmission electron microscopy showed an increase in carbon nanopearl size with larger Ni nanoparticles. Raman results concluded that the smaller catalyst resulted in a more crystalline graphitic structure. Finally, the results showed that the 20 nm Ni nanoparticles chemically reacted sooner than the 100 nm Ni nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  3. X. Sun and Y. Li, Ang. Chem. Int. 43, 597 (2004).

    Article  Google Scholar 

  4. H. Qian, F. Han, B. Zhang, Y. Guo, J. Yue, and B. Peng, Carbon 42, 761 (2004).

    Article  CAS  Google Scholar 

  5. Y. Fan, G. Liu, X. Liu, and B. Xu, J. Mater. Sci. 41, 5242 (2006).

    Article  CAS  Google Scholar 

  6. Y.Z. Jin, C. Gao, W.K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C.Y. Lee, S. Acquah, H. Kroto, and D.R.M. Walton, Carbon 43, 1944 (2005).

    Article  CAS  Google Scholar 

  7. A. Levesque, V.T. Binh, V. Semet, D. Guillot, R.Y. Fillit, M.D. Brookes, and T.P. Nguyen, Thin Solid Films 464–465, 308 (2004).

    Article  Google Scholar 

  8. S. Houston, G.J. Brown, T. Murray, S. Fairchild, K. Eyink, and A. Smetana, J. Electron. Mater. 38, 737 (2009).

    Article  CAS  Google Scholar 

  9. C.N. Hunter, M.H. Check, A.A. Voevodin, and C.H. Hager, Tribol. Lett. 30, 169 (2008).

    Article  CAS  Google Scholar 

  10. J.Y. Miao, D.W. Hwang, K.V. Narasimhulu, P.I. Lin, Y.T. Chen, S.H. Lin, and L.P. Hwang, Carbon 42, 813 (2004).

    Article  CAS  Google Scholar 

  11. B.R. Selvi, D. Jagadeesan, B.S. Suma, G. Nagashankar, M. Arif, K. Balasubramanyam, M. Eswaramoorthy, and T.K. Kundu, Nano Lett. 8, 3182 (2008).

    Article  CAS  Google Scholar 

  12. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Reading, MA: Addison-Wesley, 1978), p. 102.

    Google Scholar 

  13. C. Buzea, I.I.P. Blandino, and K. Robbie, Biointerphases 2, MR17 (2007).

    Article  Google Scholar 

  14. I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, and A. Wokaun, Appl. Catal. A 329, 68 (2007).

    Article  CAS  Google Scholar 

  15. L.B. Biedermann, M.L. Bolen, M.A. Capano, D. Zemlyanov, and R.G. Reifenberger, Phys. Rev. B 79, 125411 (2009).

    Article  Google Scholar 

  16. D. Briggs and J. Grant, Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (United Kingdom: Cromwell, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pacley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacley, S., Mitchel, W.C., Murray, P.T. et al. The Role of the Nickel Catalyst and Its Chemical and Structural Evolution During Carbon Nanopearl Growth. J. Electron. Mater. 42, 417–425 (2013). https://doi.org/10.1007/s11664-012-2367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2367-0

Keywords

Navigation