Skip to main content
Log in

Electrical and Optical Characterization of Ni/Al0.3Ga0.7N/GaN Schottky Barrier Diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ni/AlGaN/GaN Schottky barrier diodes were characterized by electrical and optical measurements. Analysis of temperature-dependent (80 K to 550 K) current–voltage characteristics considering various transport mechanisms shows that the tunneling current dominates in the samples investigated. Thermionic emission current, extracted from the total current by a fitting procedure, yielded an effective barrier height of 1.36 eV to 1.39 eV at 300 K, and its slight decrease with increased temperature. This result shows that significantly lower barrier heights reported before (0.73 eV to 0.96 eV) follow from an assumption that the measured and thermionic currents are equal. The barrier height of 1.66 eV extracted from photoemission measurements confirms that electrically evaluated barrier heights are underestimated. The tunneling current contribution is considered to be dislocation governed, and a dislocation density of about 2 × 108 cm−2 is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-J. Lin, Thin Solid Films 519, 829 (2010).

    Article  CAS  Google Scholar 

  2. P.K. Rao, B. Park, S.-T. Lee, Y.-K. Noh, M.-D. Kim, and J.-E. Oh, J. Appl. Phys. 110, 013716 (2011).

    Article  Google Scholar 

  3. M.S.P. Reddy, A.A. Kumar, and V.R. Rajagopal, Thin Solid Films 519, 3844 (2011).

    Article  CAS  Google Scholar 

  4. D. Li, X. Sun, H. Song, Z. Li, Y. Chen, G. Miao, and H. Jiang, Appl. Phys. Lett. 98, 011108 (2011).

    Article  Google Scholar 

  5. W. Lim, J.H. Jeong, J.-H. Lee, S.-B. Hur, J.-K. Ryu, K.-S. Kim, T.-H. Kim, S.Y. Song, J.-I. Yang, and S.J. Pearton, Appl. Phys. Lett. 97, 242103 (2010).

    Article  Google Scholar 

  6. E. Arslan, S. Bütün, Y. Safak, H. Uslu, I. Tascioglu, S. Altindal, and E. Özbay, Microelectron. Reliab. 51, 370 (2011).

    Article  CAS  Google Scholar 

  7. S. Saadaoui, M.M.B. Salem, M. Gassoumi, H. Maaref, and Ch. Gaquire, J. Appl. Phys. 110, 013701 (2011).

    Article  Google Scholar 

  8. A.R. Arehart, A.A. Allerman, and S.A. Ringel, J. Appl. Phys. 109, 114506 (2011).

    Article  Google Scholar 

  9. Y. Lv, Z. Lin, T.D. Corrigan, J. Zhao, Z. Cao, L. Meng, Ch. Luan, Z. Wang, and H. Chen, J. Appl. Phys. 109, 074512 (2011).

    Article  Google Scholar 

  10. Y. Lv, Z. Lin, L. Meng, Y. Yu, Ch. Luan, Z. Cao, H. Chen, B. Sun, and Z. Wang, J. Appl. Phys. 99, 123504 (2011).

    Google Scholar 

  11. D. Donoval, M. Barus, and M. Zdimal, Solid State Electron. 34, 1365 (1991).

    Article  CAS  Google Scholar 

  12. J. Kováč, A. Šatka, A. Chvála, D. Donoval, P. KordoŠ, and S. Delage, Microelectron. Reliab. 52, 1323 (2012).

    Google Scholar 

  13. See http://www.ioffe.rssi.ru/SVA/NSM/ for an archive of material properties. Accessed July 04, 2012.

  14. D. Qiao, L.S. Yu, S.S. Lau, J.M. Redwing, J.Y. Lin, and H.X. Jiang, J. Appl. Phys. 87, 803 (2000).

    Google Scholar 

  15. V.V. Estropov, M. Dzhumaeva, Yu.V. Zhilyaev, N. Nazarov, A.A. Sitnikova, and L.M. Fedorov, Semiconductors 34, 1305 (2000).

    Article  Google Scholar 

  16. A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, V.P. Klad’ko, R.V. Konakova, Ya.Ya. Kudrik, A.V. Kuchuk, V.V. Milenin, Yu.N. Sveshnikov, and V.N. Sheremet, Semiconductors 42, 689 (2008).

    Article  CAS  Google Scholar 

  17. J. Wu, J. Appl. Phys. 106, 011101 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kordoš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kordoš, P., Škriniarová, J., Chvála, A. et al. Electrical and Optical Characterization of Ni/Al0.3Ga0.7N/GaN Schottky Barrier Diodes. J. Electron. Mater. 41, 3017–3020 (2012). https://doi.org/10.1007/s11664-012-2184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2184-5

Keywords

Navigation