Skip to main content
Log in

Surface Morphology of Sn-Rich Solder Interconnects After Electrical Loading

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Morphological changes from electromigration were examined on microsized Sn-Ag-Cu, pure Sn, and single-crystal Sn solder interconnects. It was found that both grain structure and alloying had a strong influence on the form of electromigration damage. In polycrystal Sn, grain boundary grooves were the primary form of electromigration damage, while in single-crystal Sn interconnects wavy surface relief appeared following electromigration. Alloying with Ag and Cu encouraged formation of Sn hillocks and Cu6Sn5 intermetallic compound (IMC) segregation. The grain boundary grooves were related to the divergence of the vacancy concentration at grain boundaries, which induced Sn grain tilting or sliding. Removal of the grain boundaries in the single-crystal interconnect made surface diffusion the primary electromigration mechanism, resulting in wavy surface relief after long electromigration time. In Sn-Ag-Cu alloy, directional flow of Cu caused Cu6Sn5 IMC segregation, which produced large compressive stress, driving the stressed grains to grow into hillocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zeng and K.N. Tu, Mater. Sci. Eng. R. 38, 55 (2002).

    Article  Google Scholar 

  2. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  CAS  Google Scholar 

  3. Y.C. Chan and D. Yang, Prog. Mater. Sci. 55, 428 (2010).

    Article  CAS  Google Scholar 

  4. L. Zhang, Z.G. Wang, and J.K. Shang, Scripta Mater. 56, 381 (2007).

    Article  CAS  Google Scholar 

  5. H.Y. Liu, Q.S. Zhu, L. Zhang, Z.G. Wang, and J.K. Shang, J. Mater. Res. 5, 1172 (2010).

    Article  Google Scholar 

  6. H.Y. Liu, Q.S. Zhu, Z.G. Wang, and J.K. Shang, Mater. Sci. Eng. A 528, 1467 (2011).

    Article  Google Scholar 

  7. F. Ren, J.W. Nah, K.N. Tu, B.S. Xiong, L.H. Xu, and H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006).

    Article  Google Scholar 

  8. X.J. Wang, Q.S. Zhu, Z.G. Wang, and J.K. Shang, J. Mater. Sci. Technol. 26, 737 (2010).

    Article  Google Scholar 

  9. S. Branderburg and S. Yeh, Proceeding of Surface Mount International Conference and Exposition, San Jose, CA (1998).

  10. Q.L. Yang and J.K. Shang, J. Electron. Mater. 34, 1363 (2005).

    Article  CAS  Google Scholar 

  11. Y.C. Hu, Y.H. Lin, C.R. Kao, and K.N. Tu, J. Mater. Res. 18, 2544 (2003).

    Article  CAS  Google Scholar 

  12. Y.H. Lin, Y.C. Hu, C.R. Kao, and K.N. Tu, Acta Mater. 53, 2029 (2005).

    Article  CAS  Google Scholar 

  13. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).

    Article  CAS  Google Scholar 

  14. H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005).

    Article  Google Scholar 

  15. A.T. Wu and T.C. Hsieh, Appl. Phys. Lett. 92, 121921 (2008).

    Article  Google Scholar 

  16. A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Appl. Phys. Lett. 85, 2490 (2004).

    Article  CAS  Google Scholar 

  17. H.Y. Hsiao and C. Chen, Appl. Phys. Lett. 90, 152105 (2007).

    Article  Google Scholar 

  18. A.T. Huang, A.M. Gusak, K.N. Tu, and Y.S. Lai, Appl. Phys. Lett. 88, 141911 (2006).

    Article  Google Scholar 

  19. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  CAS  Google Scholar 

  20. K.N. Tu, Phys. Rev. B-Condens. Matter 49, 2030 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. S. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q.S., Liu, H.Y., Wang, Z.G. et al. Surface Morphology of Sn-Rich Solder Interconnects After Electrical Loading. J. Electron. Mater. 41, 741–747 (2012). https://doi.org/10.1007/s11664-012-1932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1932-x

Keywords

Navigation