Skip to main content
Log in

Electronic and Lattice Vibrational Properties of Cubic SrHfO3 from First-Principles Calculations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The electronic structure and lattice vibrational properties of cubic SrHfO3 were investigated by first-principles calculations based on density functional theory in the framework of the local density approximation (LDA), generalized gradient approximation (GGA), and density functional perturbation theory (DFPT), respectively. The calculated equilibrium lattice constant of cubic SrHfO3 is in good agreement with available experimental and theoretical results. The results show that cubic SrHfO3 is an insulator with an indirect LDA (GGA) band gap of 3.6 (3.7) eV. Use of the screened exchange local density approximation (sX-LDA) as a functional in successive band calculation has also been performed. The band gap is predicted to be 6.27 eV within sX-LDA, in excellent agreement with the gap value of 6.1 ± 0.1 eV obtained from x-ray photoelectron spectroscopy. The phonon dispersion curves and LO–TO splitting of cubic SrHfO3 were also calculated. Negative phonon frequencies were observed along the M–Γ–R–M line in the Brillouin zone, indicating instability of the SrHfO3 structure, consistent with previous theoretical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, P.W. Peacock, M.D. Towler, and R. Needs, Thin Solid Films 411, 96 (2002).

    Article  CAS  Google Scholar 

  2. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).

    Article  CAS  Google Scholar 

  3. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, Proc. IEDM 247 (2007).

  4. C. Auth, M. Buehler, A. Cappellani, C.-H. Choi, G. Ding, W. Han, S. Joshi, B. McIntyre, M. Prince, P. Ranade, J. Sandford, and C. Thomas, Intel Technol. J. 12, 77 (2008).

    Google Scholar 

  5. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon, 1977).

    Google Scholar 

  6. Y. Inaguma, J.-H. Sohn, I.-S. Kim, M. Itoh, and T. Nakamura, J. Phys. Soc. Jpn. 61, 383 (1992).

    Article  Google Scholar 

  7. C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J.–.P. Loucquet, J. Fompeyrine, D.J. Webb, Ch. Dieker, and J.W. Seo, Appl. Phys. Lett. 89, 053506 (2006).

    Article  Google Scholar 

  8. M. Sousa, C. Rossel, C. Marchiori, H. Siegwart, D. Caimi, J.-P. Locquet, D.J. Webb, R. Germann, J. Fompeyrine, K. Babich, J.W. Seo, and Ch. Dieker, J. Appl. Phys. 102, 104103 (2007).

    Article  Google Scholar 

  9. C. Rossel, M. Sousa, C. Marchiori, J. Fompeyrine, D. Webb, D. Caimi, B. Mereu, A. Ispas, J.P. Locquet, H. Siegwart, R. Germann, A. Tapponnier, and K. Babich, Microelectron. Eng. 84, 1869 (2007).

    Article  CAS  Google Scholar 

  10. S.J. Clark, M.D. Segall, C.J. Pikard, P.J. Hasnip, M.J. Robert, K. Refson, and M.C. Payne, Z. Krist. 220, 567 (2005).

    Article  CAS  Google Scholar 

  11. http://opium.sourceforge.net.

  12. D.M. Ceperly and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  13. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  14. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  15. H. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  16. T.H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).

    Article  CAS  Google Scholar 

  17. B.M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).

    Article  Google Scholar 

  18. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  19. J. Muscat, A. Wander, and N.M. Harrison, Chem. Phys. Lett. 342, 397 (2001).

    Article  CAS  Google Scholar 

  20. A. Filippetti and N.A. Spaldin, Phys. Rev. B 13, 4470 (1976).

    Article  Google Scholar 

  21. A. Seidl, A. G rling, P. Vogl., J.A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996).

    Article  CAS  Google Scholar 

  22. M.C. Gibson, S. Brand, and S.J. Clark, Phys. Rev. B 73, 125120 (2006).

    Article  Google Scholar 

  23. S.J. Clark and J. Robertson, Phys. Rev. B 82, 085208 (2010).

    Article  Google Scholar 

  24. S. Baroni, S. de Gironcoli, P. Giannozzi, and A. dal Corso, Rev. Mod. Phys. 73, 515 (1999).

    Article  Google Scholar 

  25. K. Refson, P.R. Tulip, and S.J. Clark, Phys. Rev. B 73, 155114 (2006).

    Article  Google Scholar 

  26. Z.F. Hou, Phys. Status Solidi B 246, 135 (2009).

    Article  CAS  Google Scholar 

  27. Z. Feng, H. Hu, S. Cui, C. Bai, and H. Li, J. Phys. Chem. Sol. 70, 412 (2009).

    Article  CAS  Google Scholar 

  28. M.G. Stachiotti, G. Fabricius, R. Alonso, and C.O. Rodriguez, Phys. Rev. B 58, 8145 (1998).

    Article  CAS  Google Scholar 

  29. Y.X. Wang, C.L. Wang, and W.L. Zhong, J. Phys. Chem. B 109, 12909 (2005).

    Article  CAS  Google Scholar 

  30. R. Vali, Solid State. Commun. 148, 29 (2009).

    Article  Google Scholar 

  31. H. Murata, T. Yamamoto, H. Moriwake, and I. Tanaka, Phys. Status Solidi B 246, 1628 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Ministry of Science and Technology, Thailand, through its Computational Nanoscience Consortium (CNC). A.Y. acknowledges computer resources available at the SILA cluster, Ramkhamhaeng University, and LSR of NECTEC, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yangthaisong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yangthaisong, A. Electronic and Lattice Vibrational Properties of Cubic SrHfO3 from First-Principles Calculations. J. Electron. Mater. 41, 535–539 (2012). https://doi.org/10.1007/s11664-011-1840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1840-5

Keywords

Navigation