Skip to main content
Log in

Si Wafer Thinning Techniques Compatible With Epitaxy of CdTe Buffer Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Reduction of threading dislocation density is critical for improving the performance of HgCdTe detectors on lattice-mismatched alternative substrates such as Si. CdTe buffer layers grown by molecular beam epitaxy (MBE), with thicknesses on the order of 8 μm to 12 μm, have helped reduce dislocation densities in HgCdTe layers. In this study, the reduction of threading dislocation densities in CdTe buffer layers grown on locally thinned Si substrates was examined. A novel Si back-thinning technique was developed that maintained an epiready front surface and achieved Si thicknesses as low as 1.9 μm. Threading dislocation densities, acquired by defect decoration techniques, were reduced by as much as 60% for CdTe buffer layers grown on these thinned regions when compared with unthinned regions. However, this reduction is inconsistent with prior notions that threading dislocation propagation is dominated by image forces. Instead, the thickness gradient of thinned Si may play a larger role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Capper, Properties of Narrow Gap Cadmium-Based Compounds (London: INSPEC, 1994), p. 207.

    Google Scholar 

  2. P. Norton, Opto-Electron. Rev. 10, 159 (2002).

    CAS  Google Scholar 

  3. P. Capper, Properties of Narrow Gap Cadmium-Based Compounds (London: INSPEC, 1994), p. 44.

    Google Scholar 

  4. R.S. Rai, S. Mahajan, D.J. Michel, H.H. Smith, S. McDevitt, and C.J. Johnson, Mater. Sci. Eng. B 10, 219 (1991).

    Article  Google Scholar 

  5. T.J. deLyon, R.D. Rajavel, J.E. Jensen, O.K. Wu, S.M. Johnson, C.A. Cockrum, and G.M. Venzor, J. Electron. Mater. 25, 1341 (1996).

    Article  CAS  Google Scholar 

  6. R. Sporken, S. Sivananthan, K.K. Mahavadi, G. Monfroy, M. Boukerche, and J.P. Faurie, Appl. Phys. Lett. 55, 1879 (1989).

    Article  CAS  Google Scholar 

  7. R. Kay, R. Bean, K. Zanio, C. Ito, and D. McIntyre, Appl. Phys. Lett. 51, 2211 (1987).

    Article  CAS  Google Scholar 

  8. J.P. Faurie, J. Reno, S. Sivananthan, I.K. Sou, X. Chu, M. Boukerche, and P.S. Wijewarnasuriya, J. Vac. Sci. Technol. A 4, 2067 (1986).

    Article  CAS  Google Scholar 

  9. A.J. Noreika, R.F.C. Farrow, F.A. Shirland, W.J. Takei, J. Greggi, S. Wood, and W.J. Choyke, J. Vac. Sci. Technol. A 4, 2081 (1986).

    Article  CAS  Google Scholar 

  10. I. Hahnert and M. Schenk, J. Cryst. Growth 101, 251 (1990).

    Article  Google Scholar 

  11. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B 4, 1499 (1992).

    Article  Google Scholar 

  12. M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, S. Cabelli, J. Bajaj, L.A. Almeida, J.H. Dinan, M. Groenert, A.J. Stoltz, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 34, 832 (2005).

    Article  CAS  Google Scholar 

  13. R. Zhang and I. Bhat, J. Electron. Mater. 29, 765 (2000).

    Article  CAS  Google Scholar 

  14. T.D. Golding, O.W. Holland, M.J. Kim, J.H. Dinan, L.A. Almeida, J.M. Arias, J. Bajaj, H.D. Shih, and W.P. Kirk, J. Electron. Mater. 32, 882 (2003).

    Article  CAS  Google Scholar 

  15. J. Molstad, P. Boyd, J. Markunas, D.J. Smith, E. Smith, E. Gordon, and J.H. Dinan, J. Electron. Mater. 35, 1636 (2006).

    Article  CAS  Google Scholar 

  16. R.N. Jacobs, P.J. Smith, J.K. Markunas, J.D. Benson, and J. Pellegrino, J. Electron. Mater. 39, 1036 (2010).

    Article  CAS  Google Scholar 

  17. L.B. Freund and W.D. Nix, Appl. Phys. Lett. 69, 173 (1996).

    Article  CAS  Google Scholar 

  18. F. Laermer and A. Schilp, U.S. Patent No. 5, 501, 893 (Washington, DC: U.S. Patent and Trademark Office, 1996).

    Google Scholar 

  19. N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).

    Article  CAS  Google Scholar 

  20. W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, and H.F. Schaake, J. Electron. Mater. 24, 505 (1995).

    Article  CAS  Google Scholar 

  21. P.R. Griffiths and J.A. deHaseth, Fourier Transform Infrared Spectrometry (New York: Wiley, 1986), p. 254.

    Google Scholar 

  22. L.J. Wang, S.M. Zhang, Y.T. Wang, D.S. Jiang, J.J. Zhu, D.G. Zhao, Z.S. Liu, H. Wang, Y.S. Shi, H. Wang, S.Y. Liu, and H. Yang, Chin. Phys. Lett. 26, 76104 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Markunas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markunas, J.K., Jacobs, R.N., Smith, P.J. et al. Si Wafer Thinning Techniques Compatible With Epitaxy of CdTe Buffer Layers. J. Electron. Mater. 40, 1809–1814 (2011). https://doi.org/10.1007/s11664-011-1651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1651-8

Keywords

Navigation