Skip to main content
Log in

Seebeck Coefficient in Nonparabolic Bulk Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We address a simplified formulation of the Seebeck coefficient (S) in degenerate bulk III–V and skutterudite materials within the framework of the k·p formalism, the conduction-band electrons of which obey Kane’s second-order energy dispersion relation. Incorporation of longitudinal acoustic phonon, screened ionized impurity, and polar optical phonon scatterings explains the origin of the experimentally determined change of sign of S in a skutterudite material such as CoSb3. The use of an overlap function due to band nonparabolicity significantly affects the carrier relaxation time when compared with the corresponding parabolic energy dispersion relation. The well-known expression of S for nondegenerate wide-band-gap materials is obtained as a special case, and this compatibility is an indirect test of the generalized theoretical analysis. The present model of S also agrees well with the available experimental data on such materials over a wide range of temperatures and can be carried forward for accurate analysis of the thermoelectric figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Herring, Phys. Rev. B 96, 1163 (1954).

    Article  CAS  Google Scholar 

  2. D.L. Rode, Phys. Rev. B 3, 3287 (1971).

    Article  Google Scholar 

  3. P. Hoschlp, P. Moravec, E. Belas, J. Franc, and R. Grill, Phys. Stat. Sol. (b) 147, 621 (1988).

    Article  Google Scholar 

  4. J.O. Sofo, G.D. Mahan, and J. Baars, J. Appl. Phys. 76, 2249 (1994).

    Article  CAS  Google Scholar 

  5. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  CAS  Google Scholar 

  6. E. Arushanov, K. Fess, W. Kaefer, Ch. Kloc, and E. Bucher, Phys. Rev. B 56, 1911 (1997).

    Article  CAS  Google Scholar 

  7. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, and H. Tashiro, J. Appl. Phys. 86, 3780 (1999).

    Article  CAS  Google Scholar 

  8. G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Vol. 45 (Germany: Springer Series in Materials Science, 2001).

    Google Scholar 

  9. K.T. Wojciechowski, J. Tobola, and J. Leszczyński, J. Alloys Compd 361, 19 (2003).

    Article  CAS  Google Scholar 

  10. D. Vashaee and A. Shakouri, J. Appl. Phys. 95, 1233 (2004).

    Article  CAS  Google Scholar 

  11. K. Koga, K. Akai, K. Oshiro, and M. Matsuura, Phys. Rev. B 71, 155119 (2005).

    Article  Google Scholar 

  12. D.M. Rowe, eds., Thermoelectrics Handbook: Macro to Nano (USA: CRC, 2006).

    Google Scholar 

  13. R.C. Mallik, J.-Y. Jung, V.D. Das, S.-C. Ur, and I.-H. Kim, Solid State Commun. 141, 233 (2007).

    Article  CAS  Google Scholar 

  14. G. Homm, P.J. Klar, J. Teubert, and W. Heimbrodt, Appl. Phys. Lett. 93, 042107 (2008).

    Article  Google Scholar 

  15. J.O. Sofo and G.D. Mahan, Phys. Rev. B 58, 15620 (1998).

    Article  CAS  Google Scholar 

  16. B.R. Nag, Electron Transport in Compound Semiconductors (Berlin: Springer Solid State Science Series, 1980).

    Google Scholar 

  17. Y.I. Ravich, B.A. Efimova, and V.I. Tamarchenko, Phys. Stat. Sol. (b) 43, 11 (1971).

    Article  CAS  Google Scholar 

  18. Y.I. Ravich, B.A. Efimova, and I.A. Smirno, Semiconducting Lead Chalcogenides, Vol. 5 (New York: Plenum, 1970).

    Google Scholar 

  19. D.M. Zayachuk, Semiconductors 31, 173 (1997).

    Article  Google Scholar 

  20. D.M. Freik, L.I. Nykyruy, and V.M. Shperun, Semiconductor Physics, Quantum Electronic Optoelectronics 5, 362 (2002).

    CAS  Google Scholar 

  21. D.I. Bilc, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B 74, 125202 (2006).

    Article  Google Scholar 

  22. S. Ahmad and S.D. Mahanti, Phys. Rev. B 81, 165203 (2010).

    Article  Google Scholar 

  23. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2002).

    Google Scholar 

  24. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited, 1956).

    Google Scholar 

  25. G.D. Mahan and J.O. Soffo, Proc. Natl Acad. Sci. USA 93, 7436 (1993).

    Article  Google Scholar 

  26. J.S. Blakemore, Semiconductor Statistics (New York: Dover, 1987).

    Google Scholar 

  27. P.T. Landsberg, Eur. J. Phys. 2, 213 (1981).

    Article  CAS  Google Scholar 

  28. H.C. Cassey and F. Stern, J. Appl. Phys. 47, 631 (1976).

    Article  Google Scholar 

  29. R.B. Dingle, Phil. Mag. 46, 813 (1955).

    Google Scholar 

  30. D. Redfield and M.A. Afromowitz, Phil. Mag. 18, 831 (1969).

    Article  Google Scholar 

  31. E.O. Kane, Solid State Electron. 8, 3 (1985).

    Article  Google Scholar 

  32. W. Zawadzki, Handbook on Semiconductors, Vol. 1, ed. W. Paul (Holland: North Holland, 1982), p. 715.

    Google Scholar 

  33. S.D. Yoo and K.D. Kwack, J. Appl. Phys. 81, 719 (1997).

    Article  CAS  Google Scholar 

  34. H. Fröhlich, Adv. Phys. 3, 325 (1954).

    Article  Google Scholar 

  35. S. Adachi, Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs and InGaAsP (Germany: Wiley VCH, 2004).

    Google Scholar 

  36. O. Madelung, Semiconductor Data Handbook, 3rd ed. (Germany: Springer, 2004).

    Book  Google Scholar 

  37. J. Kolodziejczak and R. Kowalczyk, Acta Physiol. Pol. 21, 389 (1962).

    Google Scholar 

  38. A.Y. Burenkov, Y. Davydov, and S.P. Nikanorov, Sov. Phys. Solid State 17, 1446 (1975).

    Google Scholar 

  39. J.C. Phillips, Bonds and Bands in Semiconductors (New York: Academic, 1973).

    Google Scholar 

  40. W. Zawadzki and W. Szymanska, J. Phys. Chem. Solids 32, 1151 (1971).

    Article  Google Scholar 

  41. C.L. Litter and D.G. Seller, Appl. Phys. Lett. 46, 986 (1985).

    Article  Google Scholar 

  42. C.-C. Wu and C.-J. Lin, Physica B 263, 208 (1999).

    Article  Google Scholar 

  43. L.J. Slutsky and C.J. Garland, Phys. Rev. 113, 167 (1959).

    Article  CAS  Google Scholar 

  44. K.P. Ghatak and S. Bhattacharya, Thermoelectric Power in Nanostructured Materials: Strong Magnetic Fields, Vol. 137 (New York: Springer Series in Materials Science, 2010).

    Book  Google Scholar 

  45. B. Gelmont, B. Laurel, K.-S. Kim, G.U. gensen, and M. Shur, J. Appl. Phys. 71, 4977 (1992).

    Article  CAS  Google Scholar 

  46. W.M. Higgins, G.N. Pultz, R.G. Roy, R.A. Lancaster, and J.L. Schmit, J. Vac. Sci. Technol. A7, 271 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Mallik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Mallik, R.C. Seebeck Coefficient in Nonparabolic Bulk Materials. J. Electron. Mater. 40, 1221–1232 (2011). https://doi.org/10.1007/s11664-011-1610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1610-4

Keywords

Navigation