Skip to main content
Log in

Cage-Shaped Mo9 Chalcogenides: Promising Thermoelectric Materials with Significantly Low Thermal Conductivity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric properties of molybdenum selenides containing Mo9 clusters have been investigated between 300 K and 800 K. Ag x Mo9Se11 (x = 3.4 and 3.8) have been synthesized by solid-state reaction and spark plasma sintering. X-ray diffraction and scanning electron microscopy reveal high purity and good homogeneity of the samples. The thermoelectric power of the samples is positive over the whole investigated temperature range, indicating that the majority of charge carriers are holes. The Seebeck coefficient increases with temperature, and the temperature coefficient of the resistivity is positive. Significantly low thermal conductivity, comparable to values reported for state-of-the-art thermoelectric materials, is observed in this new system, and this is assumed to be associated with the rattling effect from the Ag filler atoms. It has been demonstrated that the electrical and thermal properties correlate to the Ag concentration. For x = 3.8, a promising dimensionless thermoelectric figure of merit of ∼0.7 is obtained at 800 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC Press, 1995).

    Book  Google Scholar 

  2. D.M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano (Boca Raton, FL: CRC Press, 2005).

    Book  Google Scholar 

  3. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  4. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  5. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  6. H.J. Kim, E.S. Božin, S.M. Haile, G.J. Snyder, and S.J.L. Billinge, Phys. Rev. B 75, 134103 (2007).

    Article  Google Scholar 

  7. G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998).

    Article  CAS  Google Scholar 

  8. T. Caillat, J.P. Fleurial, and G.J. Snyder, Solid State Sci. 1, 535 (1999).

    Article  CAS  Google Scholar 

  9. R.W. Nunes, I.I. Mazin, and D.J. Singh, Phys. Rev. B 59, 7969 (1999).

    Article  CAS  Google Scholar 

  10. C. Roche, R. Chevrel, A. Jenny, P. Pecheur, H. Scherrer, and S. Scherrer, Phys. Rev. B 60, 16442 (1999).

    Article  CAS  Google Scholar 

  11. E. Kaldis, Current Topics in Materials Science, Vol. 3 (Amsterdam: North-Holland, 1979).

    Google Scholar 

  12. B.C. Sales, B.C. Chakoumakos, D. Mandrus, and J.W. Sharp, J. Solid State Chem. 146, 528 (1999).

    Article  CAS  Google Scholar 

  13. E. Levi, G. Gershinsky, D. Aurbach, O. Isnard, and G. Ceder, Chem. Mater. 21, 1390 (2009).

    Article  CAS  Google Scholar 

  14. P. Gougeon, J. Padiou, J.Y.L. Marouille, M. Potel, and M. Sergent, J. Solid State Chem. 51, 218 (1984).

    Article  CAS  Google Scholar 

  15. P. Gougeon, M. Potel, and R. Gautier, Inorg. Chem. 43, 1257 (2004).

    Article  CAS  Google Scholar 

  16. S. Picard, J.-F. Halet, P. Gougeon, and M. Potel, Inorg. Chem. 38, 4422 (1999).

    Article  CAS  Google Scholar 

  17. P. Gougeon, M. Potel, J. Padiou, and M. Sergent, CR Acad. Sci. 297, 351 (1983).

    Google Scholar 

  18. T. Caillat and J.-P. Fleurial, J. Solid State Chem. 59, 1139 (1998).

    CAS  Google Scholar 

  19. M.A. McGuire, A.M. Schmidt, F. Gascoin, G. Jeffrey Snyder, and F.J. DiSalvo, J. Solid State Chem. 179, 2158 (2006).

    Article  CAS  Google Scholar 

  20. X-y Shi, L. Wang, L-d Chen, and X-h Chen, Trans. Nonferr. Met. Soc. 19, 642 (2009).

    Article  CAS  Google Scholar 

  21. R. Landauer, J. Appl. Phys. 23, 779 (1952).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Lenoir, B., Christophe, C. et al. Cage-Shaped Mo9 Chalcogenides: Promising Thermoelectric Materials with Significantly Low Thermal Conductivity. J. Electron. Mater. 40, 508–512 (2011). https://doi.org/10.1007/s11664-010-1413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1413-z

Keywords

Navigation