Skip to main content
Log in

Study of Metal Contamination in CMOS Image Sensors by Dark-Current and Deep-Level Transient Spectroscopies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Pixels in complementary metal–oxide–semiconductor (CMOS) image sensors (CISs) are being scaled downward toward 1.0 μm. In this context, improvements in crucial parameters such as dark current per pixel, which suffers from defects incorporated during processing, need to be achieved. Indeed, accidental metallic contamination is a critical issue that induces dark current and reduces yield. In this paper, detection and characterization of gold and tungsten implanted in CISs using dark-current and deep-level transient spectroscopies are reported. Deep levels responsible for dark current are identified, and tungsten is studied for the first time with dark current spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, Microelectron. J. 37, 433 (2006).

    Article  Google Scholar 

  2. A. El Gamal and H. Eltoukhy, IEEE Circuit. Dev. 21, 6 (2005).

    Article  Google Scholar 

  3. K. Tokashiki, K. Bai, K. Baek, Y. Kim, G. Min, C. Kang, H. Cho, and J. Moon, Thin Solid Films 515, 4864 (2007).

    Article  CAS  ADS  Google Scholar 

  4. Y. Kunimi and B. Pain, Proceedings of the 2007 International Image Sensor Workshop, Ogunquit Maine, USA, June 7–10, 2007, p. 66.

  5. E. Colelli, A. Galbiati, D. Caputo, M.L. Polignano, V. Soncini, and G. Salva, Proceedings of the 8th International Symposium on Plasma and Process Induced Damage, Corbeil-Essonnes, France, April 24–25, 2003, p. 81.

  6. R.B. Liebert, G.C. Angel, and M. Kase, Proceedings of the 11th International Conference on Ion Implantation Technology, Austin Texas, USA, June 16–21, 1996, p. 135.

  7. W.C. McColgin, J.P. Lavine, and C.V. Stancampiano, Mater. Res. Soc. Symp. Proc. 378, 713 (1995).

    CAS  Google Scholar 

  8. W.C. McColgin, J.P. Lavine, C.V. Stancampiano, and J.B. Russell, Mater. Res. Soc. Symp. Proc. 510, 475 (1998).

    CAS  Google Scholar 

  9. R.D. McGrath, J. Dory, G. Lupino, G. Ricker, and J. Vallerga, IEEE Trans. Electron. Dev. 34, 2555 (1987).

    Article  ADS  Google Scholar 

  10. C. Tivarus and W.C. McColgin, IEEE Trans. Nucl. Sci. 55, 1719 (2008).

    Article  CAS  ADS  Google Scholar 

  11. H.I. Kwon, I.M. Kang, B.-G. Park, J.D. Lee, and S.S. Park, IEEE Trans. Electron. Dev. 51, 178 (2004).

    Article  ADS  Google Scholar 

  12. M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J.P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, IEDM Technical Digest, 2006, pp. 127–130.

  13. K. Graff, Metal Impurities in Silicon-Device Fabrication (Berlin: Springer, 2000).

    Google Scholar 

  14. D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley, 1998).

    Google Scholar 

  15. D.K. Schroder, IEEE Trans. Electron. Dev. 29, 1336 (1982).

    Article  Google Scholar 

  16. E. Simoen and C. Claeys, IEEE Trans. Electron. Dev. 46, 1487 (1999).

    Article  CAS  ADS  Google Scholar 

  17. W.J. Toren (PhD thesis, Twente University, 1997).

  18. J. Bogaerts, B. Dierickx, and R. Mertens, IEEE Trans. Nucl. Sci. 49, 1513 (2002).

    Article  CAS  ADS  Google Scholar 

  19. A.F. Tasch Jr. and C.T. Sah, Phys. Rev. B 1, 800 (1970).

    Article  ADS  Google Scholar 

  20. R. Kalyanaraman, T.E. Haynes, V.C. Venezia, D.C. Jacobson, H.-J. Gossmann, and C.S. Rafferty, Appl. Phys. Lett. 76, 3379 (2000).

    Article  CAS  ADS  Google Scholar 

  21. M. Schulz, A. Goetzberger, I. Fränz, and W. Langheinrich, Appl. Phys. A Mater. 3, 275 (1974).

    CAS  ADS  Google Scholar 

  22. S.J. Pearton and A.J. Tavendale, Phys. Rev. B 26, 7105 (1982).

    Article  CAS  ADS  Google Scholar 

  23. S. Diez, S. Rein, and S.W. Glunz, Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, June 6–10, 2005, p. 1216.

Download references

Acknowledgements

The authors thank C. Augier, D. Herault, and S. Hulot from STMicroelectronics, Crolles, for their help in dark-current measurements and fruitful discussions, and M. Gri from IMEP, Grenoble, for her help in DLTS sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Domengie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domengie, F., Regolini, J.L. & Bauza, D. Study of Metal Contamination in CMOS Image Sensors by Dark-Current and Deep-Level Transient Spectroscopies. J. Electron. Mater. 39, 625–629 (2010). https://doi.org/10.1007/s11664-010-1212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1212-6

Keywords

Navigation