Skip to main content
Log in

LBIC and Reflectance Mapping of Multicrystalline Si Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Multicrystalline silicon (mc-Si) is increasingly used in the photovoltaic industry. However, this material is characterized by intrinsic structural heterogeneities (dislocations, grain boundaries, etc.), which are detrimental to the performance of the cells. The minority-carrier diffusion length is sensitive to these defects, and gives an indication of the material quality and its suitability for solar cell use. The laser beam induced current (LBIC) technique makes it possible to estimate the local minority-carrier diffusion length from photocurrent contrast data. The purpose of this work is to show an advanced homemade LBIC system that highlights the importance of controlling the laser power excitation and the reflected light in inhomogeneous mc-Si samples. This control demonstrates that the estimated minority-carrier diffusion length (L Diff) in texturized multicrystalline wafers strongly depends on the collecting conditions of the reflected light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yang, G.H. Schwuttke, and T.F. Ciszek, J. Cryst. Growth 50, 27 (1980).

    Article  Google Scholar 

  2. C. Donolato, J. Appl. Phys. 54, 1314 (1983).

    Article  CAS  ADS  Google Scholar 

  3. A.E. Dixon, S. Damaskinos, B.A. Oliver, and R.T. Adsett, J. Can. Ceram. Soc. 53, 21 (1984).

    CAS  Google Scholar 

  4. S. Martinuzzi, I. Périchaud, and F. Warchol, Sol. Energy Mater. Sol. Cells 80, 343 (2003).

    Article  CAS  Google Scholar 

  5. S. Martinuzzi and M. Stemmer, Mater. Sci. Eng. B24, 152 (1994).

    Article  CAS  Google Scholar 

  6. M. Rinio, S. Peters, M. Werner, A. Lawerenz, and H.J. Moeller, Solid State Phen. 82–84, 701 (2002).

    Article  Google Scholar 

  7. M. Stemmer, Appl. Surf. Sci. 63, 213 (1993).

    Article  CAS  ADS  Google Scholar 

  8. S. Martinuzzi, I. Perichaud, and O. Palais, Sol. Energy Mater. Sol. Cells 91, 1172 (2007).

    Article  CAS  Google Scholar 

  9. D. Sontag, G. Hahn, P. Geiger, P. Fath, and E. Bucher, Sol. Energy Mater. Sol. Cells 72, 533 (2002).

    Article  CAS  Google Scholar 

  10. K. Nishioka, T. Yagi, Y. Uraoka, and T. Fuyuki, Sol. Energy Mater. Sol. Cells 91, 1 (2007).

    Article  CAS  Google Scholar 

  11. M.A. Green, High Efficiency Silicon Solar Cells (Aedermannsdorf: Trans Tech, 1987), p. 228.

    Google Scholar 

  12. C.-L. Zhou, W.-J. Wang, H.-L. Ling, L. Zhao, H.-W. Diao, and X.-D. Li, Chin. Phys. Lett. 25, 3005 (2008).

    Article  CAS  ADS  Google Scholar 

  13. M. Ben Rabha, W. Dimassi, M. Bouaïcha, H. Ezzaouia, and B. Bessais, Sol. Energy 83, 721 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Junta de Castilla y León (Spain), under the program: “Convocatoria de Financiación Grupos de Excelencia GR202.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moralejo, B., González, M.A., Jiménez, J. et al. LBIC and Reflectance Mapping of Multicrystalline Si Solar Cells. J. Electron. Mater. 39, 663–670 (2010). https://doi.org/10.1007/s11664-010-1174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1174-8

Keywords

Navigation