Skip to main content
Log in

Critical Layer Thickness in Exponentially Graded Heteroepitaxial Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Exponentially graded semiconductor layers are of interest for use as buffers in heteroepitaxial devices because of their tapered dislocation density and strain profiles. Here we have calculated the critical layer thickness for the onset of lattice relaxation in exponentially graded In x Ga1−x As/GaAs (001) heteroepitaxial layers. Upwardly convex grading with \( x = x_{\infty } \left( {1 - {\rm e}^{ - \gamma /y} } \right) \) was considered, where y is the distance from the GaAs interface, γ is a grading length constant, and x is the limiting mole fraction of In. For these structures the critical layer thickness was determined by an energy-minimization approach and also by consideration of force balance on grown-in dislocations. The force balance calculations underestimate the critical layer thickness unless one accounts for the fact that the first misfit dislocations are introduced at a finite distance above the interface. The critical layer thickness determined by energy minimization, or by a detailed force balance model, is approximately \( h_{\rm{c}} \approx <$> <$>0.243\;\mu {\hbox{m}}\left( {\gamma /1\;\mu {\hbox{m}}} \right)^{0.5} \left( {x_{\infty } /0.1} \right)^{ -0.54} . \) Although these results were developed for exponentially graded In x Ga1−x As/GaAs (001), they may be generalized to other material systems for application to the design of exponentially graded buffer layers in metamorphic device structures such as modulation-doped field-effect transistors and light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Richman and J.J. Tietjen, Trans. AIME 239, 418 (1967).

    CAS  Google Scholar 

  2. J.J. Tietjen, J.I. Pankove, I.J. Hegyi, and H. Nelson, Trans. AIME 239, 385 (1968).

    Google Scholar 

  3. C.J. Nuese, J.J. Tietjen, J.J. Gannon, and H.F. Gossenberger, Trans. AIME 242, 400 (1968).

    CAS  Google Scholar 

  4. M.S. Abrahams, L.R. Weisberg, C.J. Buiocchi, and J. Blanc, J. Mater. Sci. 4, 223 (1969).

    Article  ADS  Google Scholar 

  5. R.M. Biefeld, C.R. Hills, and S.R. Lee, J. Cryst. Growth 91, 515 (1988).

    Article  ADS  CAS  Google Scholar 

  6. F.K. LeGoues, B.S. Meyerson, and J.F. Morar, Phys. Rev. Lett. 66, 2903 (1991).

    Article  PubMed  ADS  CAS  Google Scholar 

  7. E.A. Fitzgerald, Y.-H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, and B.W. Weir, J. Vac. Sci. Technol. B 10, 1807 (1992).

    Article  CAS  Google Scholar 

  8. K.L. Kavanagh, J.C. Chang, J. Chen, J.M. Fernandez, and H.H. Wieder, J. Vac. Sci. Technol. B 10, 1820 (1992).

    Article  CAS  Google Scholar 

  9. F. Schaffler, D. Tobben, H.-J. Herzog, G. Abstreiter, and B. Hollander, Semicond. Sci. Technol. 7, 260 (1992).

    Article  ADS  Google Scholar 

  10. J. Tersoff, Appl. Phys. Lett. 62, 693 (1993).

    Article  ADS  Google Scholar 

  11. J. Tersoff, Appl. Phys. Lett. 64, 2748 (1994).

    Article  ADS  Google Scholar 

  12. A. Sacedon, F. Gonzalez-Sanz, E. Calleja, E. Munoz, S.I. Molina, F.J. Pacheco, D. Araujo, R. Garcia, M. Lourenco, Z. Yang, P. Kidd, and D. Dunstan, Appl. Phys. Lett. 66, 3334 (1995).

    Article  ADS  CAS  Google Scholar 

  13. A. Bosacchi, A.C. De Riccardis, P. Frigeri, S. Franchi, C. Ferrari, S. Gennari, L. Lazzarini, L. Nasi, G. Salviati, A.V. Drigo, and F. Romanato, J. Cryst. Growth 175–176, 1009 (1997).

    Article  Google Scholar 

  14. H. Choi, Y. Jeong, J. Cho, and M.H. Jeon, J. Cryst. Growth 311, 1091 (2009).

    Article  ADS  CAS  Google Scholar 

  15. S.P. Ahrenkiel, M.W. Wanlass, J.J. Carapella, R.K. Ahrenkiel, S.W. Johnston, and L.M. Gedvilas, Sol. Energy Mater. Sol. Cells 91, 908 (2007).

    Article  CAS  Google Scholar 

  16. J.F. Ocampo, E. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 37, 1035 (2008).

    Article  ADS  CAS  Google Scholar 

  17. L.H. Wong, J.P. Liu, F. Romanato, C.C. Wong, and Y.L. Foo, Appl. Phys. Lett. 90, 061913 (2007).

    Article  ADS  CAS  Google Scholar 

  18. B. Bertoli, E.N. Suarez, F.C. Jain, and J.E. Ayers, Semicond. Sci. Technol. 24, 125006 (2009).

    Article  ADS  CAS  Google Scholar 

  19. S. Nakamura, P. Jayavel, T. Koyama, and Y. Hayakawa, J. Cryst. Growth 300, 497 (2007).

    Article  ADS  CAS  Google Scholar 

  20. B. Bertoli, E. Suarez, D. Shah, P.B. Rago, F.C. Jain, and J.E. Ayers, J. Appl. Phys. 106, 073519 (2009).

    Article  ADS  CAS  Google Scholar 

  21. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Ayers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidoti, D., Xhurxhi, S., Kujofsa, T. et al. Critical Layer Thickness in Exponentially Graded Heteroepitaxial Layers. J. Electron. Mater. 39, 1140–1145 (2010). https://doi.org/10.1007/s11664-010-1165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1165-9

Keywords

Navigation