Skip to main content
Log in

Thermal Stability of Barium and Indium Double-Filled Skutterudite Ba0.3In0.2Co3.95Ni0.05Sb12 Coated by SiO2 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Filled skutterudite thermoelectric (TE) materials have been extensively studied to search for better TE materials in the past decade. However, there is no detailed investigation about the thermal stability of filled skutterudite TE materials. The evolution of microstructure and TE properties of nanostructured skutterudite materials fabricated with Ba0.3In0.2Co3.95Ni0.05Sb12/SiO2 core–shell composite particles with 3 nm thickness shell was investigated during periodic thermal cycling from room temperature to 723 K in this work. Scanning electronic microscopy and electron probe microscopy analysis were used to investigate the microstructure and chemical composition of the nanostructured skutterudite materials. TE properties of the nanostructured skutterudite materials were measured after every 200 cycles of quenching in the temperature range from 300 K to 800 K. The results show that the microstructure and composition of Ba0.3In0.2Co3.95Ni0.05Sb12/SiO2 nanostructured skutterudite materials were more stable than those of single-phase Ba0.3In0.2Co3.95Ni0.05Sb12 bulk materials. The evolution of TE properties indicates that the electrical and thermal conductivity decrease along with an increase in the Seebeck coefficient with increasing quenching up to 2000 cycles. As a result, the dimensionless TE figure of merit (ZT) of the nanostructured skutterudite materials remains almost constant. It can be concluded that these nanostructured skutterudite materials have good thermal stability and are suitable for use in solar power generation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Day, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).

    Article  CAS  ADS  Google Scholar 

  4. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).

    Article  CAS  ADS  Google Scholar 

  5. J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X.F. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).

    Article  CAS  ADS  Google Scholar 

  6. M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller, and J. Hejtmanek, J. Appl. Phys. 97, 083712 (2005).

    Article  ADS  Google Scholar 

  7. Q.M. Lu, J.X. Zhang, X. Zhang, Y.Q. Liu, D.M. Liu, and M.L. Zhou, J. Appl. Phys. 98, 106107 (2005).

    Article  ADS  Google Scholar 

  8. X.F. Tang, H. Li, Q.J. Zhang, M. Niino, and T. Goto, J. Appl. Phys. 100, 123702 (2006).

    Article  ADS  Google Scholar 

  9. J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).

    Article  ADS  Google Scholar 

  10. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Article  ADS  Google Scholar 

  11. J.Y. Peng, P.N. Alboni, J. He, B. Zhang, Z. Su, T. Holgate, N. Gothard, and T.M. Tritt, J. Appl. Phys. 104, 053710 (2008).

    Article  ADS  Google Scholar 

  12. J.Y. Peng, J. He, P.N. Alboni, and T.M. Tritt, J. Electron. Mater. 38, 981 (2009).

    Article  CAS  ADS  Google Scholar 

  13. W.Y. Zhao, C.L. Dong, P. Wei, W. Guan, L.S. Liu, P.C. Zhai, X.F. Tang, and Q.J. Zhang, J. Appl. Phys. 102, 113708 (2007).

    Article  ADS  Google Scholar 

  14. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Q.J. Zhang, X.F. Tang, P.C. Zhai, M. Niino, and C. Endo, Mater. Sci. Forum 492–493, 135 (2005).

    Article  Google Scholar 

  16. T.M. Tritt, H. Böttner, and L.D. Chen, MRS Bull. 33, 366 (2008).

    CAS  Google Scholar 

  17. D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, and M. Chiesa, Appl. Phys. Lett. 92, 243503 (2008).

    Article  ADS  Google Scholar 

  18. C.L. Dong (Master Thesis in Materials Science and Engineering, Wuhan University of Technology, China, 2009).

  19. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program) under Project No. 2007CB607506 and National Natural Science Foundation of China (Nos. 50930004 and 50972114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, P., Zhao, WY., Dong, CL. et al. Thermal Stability of Barium and Indium Double-Filled Skutterudite Ba0.3In0.2Co3.95Ni0.05Sb12 Coated by SiO2 Nanoparticles. J. Electron. Mater. 39, 1803–1808 (2010). https://doi.org/10.1007/s11664-010-1116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1116-5

Keywords

Navigation