Skip to main content
Log in

Dynamic Recrystallization (DRX) as the Mechanism for Sn Whisker Development. Part II: Experimental Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

In Part I of this study, a dynamic recrystallization (DRX) model was proposed to describe the development of metal whiskers. A diffusion-assisted, dislocation-based mechanism would support the DRX steps of grain initiation (refinement) and grain growth. This, Part II, describes experiments investigating the time-dependent deformation (creep) of Sn under temperature conditions (0°C, 25°C, 50°C, 75°C, and 100°C) and stresses (1 MPa, 2 MPa, 5 MPa, and 10 MPa) that are commensurate with Sn whisker development, in order to parameterize the DRX process. The samples, which had columnar grains oriented perpendicular to the stress axis similar to their morphology in Sn coatings but of larger size, were tested in the as-fabricated condition as well as after 24 h annealing treatments at 150°C or 200°C. The steady-state creep behavior fell into two categories: low (<10−7 s−1) and high strain rates (>10−7 s−1). The apparent activation energy (ΔH) at low strain rates was 8 ± 9 kJ/mol for the as-fabricated condition, indicating that an anomalously or ultrafast diffusion mass transport mechanism assisted deformation. Under the high strain rates, the ΔH was 65 ± 6 kJ/mol (as-fabricated). The rate kinetics were not altered significantly by the annealing treatments. The critical strain (ε c) and Zener–Hollomon parameter (Z) confirmed that these stresses and temperatures were nearly capable of causing cyclic DRX in the Sn creep samples, but would certainly do so in Sn coatings with the smaller grain size. The effects of the annealing treatments, coupled with the DRX model, indicate the need to maximize the creep strain rate during stress relaxation so as to avoid conditions that would favor whisker growth. This study provides a quantitative methodology for predicting the likelihood of whisker growth based upon the coating stress, grain size, temperature, and the similarity assumption of creep strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM E9-89A (West Conshohoken, PA: American Society for Testing and Materials, 1995), pp. 101–103.

  2. P. Vianco, J. Rejent, and A. Kilgo, J. Electron. Mater. 33, 1389 (2004).

    Article  ADS  CAS  Google Scholar 

  3. F. Thijssen, Effect of Strain on Microstructural Evolution During Dynamic Recrystallization: Experiments on Tin (PhD Thesis, Utrecht University, The Netherlands, 2004).

  4. M. Barnett, G. Kelly, and P. Hodgson, Scripta Metall. Mater. 43, 365 (2000).

    CAS  Google Scholar 

  5. L. Dougherty, I. Robertson, and J. Vetrano, Acta Metall. Mater. 51, 4367 (2003).

    CAS  Google Scholar 

  6. R. Gifkins, J. Aust. Inst. Metal 87, 255 (1958–1959).

  7. G. Richardson, C. Sellars, and W. Tegart, Acta Metall. Mater. 14, 1225 (1966).

    Article  CAS  Google Scholar 

  8. S. Toshihide, O. Masahisa, and Y. Hiroshi, J. Jpn. Inst. Metals 63, 468 (1999).

    Google Scholar 

  9. B. Derby and M. Ashby, Scripta Metall. Mater. 21, 879 (1987).

    CAS  Google Scholar 

  10. L. Rotherham, A. Smith, and G. Greenough, J. Inst. Metals 79, 439 (1951).

    CAS  Google Scholar 

  11. F. Yang and J. Li, J. Mater. Sci. 18, 191 (2007).

    CAS  Google Scholar 

  12. E. Arzt, M. Ashby, and R. Verrall, Acta Metall. Mater. 31, 1977 (1983).

    Article  CAS  Google Scholar 

  13. W. Clagg, Scripta Metall. Mater. 18, 767 (1984).

    Google Scholar 

  14. B.-Z. Lee and D. Lee, Acta Metall. Mater. 46, 3701 (1998).

    CAS  Google Scholar 

  15. J. Harper and J. Dorn, Acta Metall. Mater. 5, 654 (1957).

    Article  CAS  Google Scholar 

  16. C. Barrett, E. Muehleisen, and W. Nix, Mater. Sci. Eng. 10, 33 (1972).

    Article  CAS  Google Scholar 

  17. O. Ruano, J. Wadsworth, and O. Sherby, Scripta Metall. Mater. 22, 1907 (1988).

    CAS  Google Scholar 

  18. P. Adeva, G. Caruana, O. Ruano, and M. Torralba, Mater. Sci. Eng. A 194, 17 (1995).

    Article  Google Scholar 

  19. J. Breen and J. Weertman, J. Metals 72, 1230 (1955).

    Google Scholar 

  20. J. Weertman, J. Appl. Phys. 28, 196 (1957).

    Article  ADS  CAS  Google Scholar 

  21. J. Weertman and J. Breen, J. Appl. Phys. 27, 1189 (1956).

    Article  ADS  CAS  Google Scholar 

  22. L. Bonar and G. Craig, Can. J. Phys. 36, 1445 (1958).

    ADS  CAS  Google Scholar 

  23. G. Pawlicki, Nucleonica 5, 45 (1967).

    Google Scholar 

  24. S. Chu and J. Li, Mater. Sci. Eng. 39, 1 (1979).

    Article  CAS  Google Scholar 

  25. O. Sherby and P. Burke, Progress in Materials Science, Vol.␣13 (Oxford, UK: Pergamon, 1968), pp. 340–347.

    Google Scholar 

  26. F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals (New York, NY: MacMillian, 1965), pp. 156–201.

    Google Scholar 

  27. M. Nagasaka, Jpn. J. Appl. Phys. 1 28, 446 (1989).

    Article  CAS  Google Scholar 

  28. H. Mecking and G. Gottstein, Recrystallization of Metallic Materials, ed. F. Haessner (Stuttgart, Germany: Riederer Verlag GmbH, 1978), pp. 195–222.

  29. I. Salvatori, T. Inoue, and K. Nagai, Iron Steel Inst. Jpn. 42, 744 (2002).

    CAS  Google Scholar 

  30. M. Wahabi, L. Gavard, F. Montheillet, J. Cabrera, and J.␣Prado, Acta Mater. 53, 4605 (2005).

    Article  Google Scholar 

  31. T. Sakai and J. Jones, Acta Metall. Mater. 32, 189 (1984).

    Article  ADS  CAS  Google Scholar 

  32. M. Barnett, G. Kelly, and P. Hodgson, Metall. Mater. Trans. A 33A, 1893 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. Vianco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vianco, P.T., Rejent, J.A. Dynamic Recrystallization (DRX) as the Mechanism for Sn Whisker Development. Part II: Experimental Study. J. Electron. Mater. 38, 1826–1837 (2009). https://doi.org/10.1007/s11664-009-0882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0882-4

Keywords

Navigation