Skip to main content
Log in

Multifunctional ZnO-Based Thin-Film Bulk Acoustic Resonator for Biosensors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) and its ternary alloy magnesium zinc oxide (Mg x Zn1−x O) are piezoelectric materials that can be used for high-quality-factor bulk acoustic wave (BAW) resonators operating at GHz frequencies. Thin-film bulk acoustic resonators (TFBARs) are attractive for applications in advanced communication and in various sensors as they offer the capability of monolithic integration of BAW resonators with radio-frequency integrated circuits (RF ICs). In this paper we report Mg x Zn1−x O-based TFBAR biosensors. The devices are built on Si substrates with an acoustic mirror consisting of alternating quarter-wavelength silicon dioxide (SiO2) and tungsten (W) layers to isolate the TFBAR from the Si substrate. High-quality ZnO and Mg x Zn1−x O thin films are achieved through a radio-frequency (RF) sputtering technique. Tuning of the device operating frequency is realized by varying the Mg composition in the piezoelectric Mg x Zn1−x O layer. Simulation results based on a transmission-line model of the TFBAR show close agreement with the experimental results. ZnO nanostructures are grown on the TFBAR’s top surface using metal- organic chemical vapor deposition (MOCVD) to form the nano-TFBAR sensor, which offers giant sensing area, faster response, and higher sensitivity over the planar sensor configuration. Mass sensitivity higher than 103 Hz cm2/ng is achieved. In order to study the feasibility of the nano-TFBAR for biosensing, the nanostructured ZnO surfaces were functionalized to selectively immobilize␣DNA, as verified by hybridization with its fluorescence-tagged DNA complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Lakin, G.R. Kline, and K.T. McCarron, IEEE Ultrasonics Symp. (1992), p. 471.

  2. R. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, and J.D. Larson III, IEEE Ultrasonics Symp. (2001), p. 813.

  3. L. Mang and F. Hickernell, Proc. IEEE Int. Freq. Control Symp. (1996), p. 363.

  4. C.W. Seabury, P.H. Kobrin, R. Addison, and D.P. Havens, IEEE MTT-S Digest (1997), p. 181.

  5. J. Kaitila, M. Ylilammi, J. Molarius, J. Ella, and T. Makkonen, Proc. IEEE Int. Ultrasonics Symp. (2001), p. 803.

  6. Y.S. Park, S. Pinkett, J.S.Kenney, and W.D. Hunt, Proc. IEEE Int. Ultrasonics Symp. (2001), p. 839.

  7. P. Hauptmann, R. Lucklum, and J. Schröder, Proc. IEEE Int. Ultrasonics Symp. (2003), p. 56.

  8. G.D. Mansfeld and I.M. Kotelyansky, Proc. IEEE Int. Ultrasonics Symp. (2002), p. 909.

  9. R. Gabl, E. Green, M. Schreiter, H.D. Feucht, H. Zeininger, R. Primig, D. Pitzer, G. Eckstein, W. Wersing, W. Reichl, and J. Runck, Proc. IEEE Sensors, Vol. 2 (2003), p. 1184.

  10. L. Mai, D.H. Kim, M. Yim, and G. Yoon, Microwave and Opt. Tech. Lett. 42, 505 (2004). doi:10.1002/mop.20351

    Article  Google Scholar 

  11. H. Zhang, M.S. Marma, E.S. Kim, C.E. McKenna, and M.E. Thompson, 17th IEEE Int. Conf. on Micro Electro Mech. Sys. (2004), p. 347.

  12. Z. Zhang, N.W. Emanetoglu, G. Saraf, Y. Chen, P. Wu, J. Zhong, Y. Lu, J. Chen, O. Mirochnitchenko, and M. Inouye, IEEE Trans. on Ultrason. Ferroelectr. Freq. Contr. 53, 786 (2006). doi:10.1109/TUFFC.2006.1665081

    Article  PubMed  Google Scholar 

  13. Y. Zhang, K. Yu, S. Quyang, L. Luo, H. Hu, Q. Zhang, Z. Zhu, Physica B 368, 94 (2005). doi:10.1016/j.physb.2005.07.001

    Article  ADS  CAS  Google Scholar 

  14. X. Zhou, J. Zhang, T. Jiang, X. Wang, Z. Zhu, Sensors and Actuators A 135, 209 (2007). doi:10.1016/j.sna.2006.07.001

    Article  CAS  Google Scholar 

  15. O. Taratula, E. Galoppini, D. Wang, D. Chu, Z. Zhang, H. Chen, G. Saraf, and Y. Lu, J. Phys. Chem. B., 110, 6506 (2006). doi:10.1021/jp0570317

    Article  PubMed  CAS  Google Scholar 

  16. Z. Zhang, H. Chen, J. Zhong, Y. Chen, and Y. Lu, Proc. IEEE Int. Freq. Contr. Symp. (2006), p. 545.

  17. Z. Zhang, H. Chen, J. Zhong, Y. Lu, J. Elect. Mater 36, 895 (2007). doi:10.1007/s11664-007-0126-4

    Article  ADS  CAS  Google Scholar 

  18. N.W. Emanetoglu, S. Muthukumar, P. Wu, R. Wittstruck, and Y. Lu, IEEE Intl. Ultrason. Symp. Proc. (2001), p. 253.

  19. N.W. Emanetoglu, S. Muthukumar, P. Wu, R. Wittstruck, Y. Chen, Y. Lu, IEEE Trans. on Ultrason. Ferroelectr. Freq. Contr. 50, 537 (2003). doi:10.1109/TUFFC.2003.1201466

    Article  Google Scholar 

  20. R.H. Wittstruck, X. Tong, N.W. Emanetoglu, P. Wu, Y. Chen, J. Zhu, S. Muthukumar, Y. Lu, A. Ballato, IEEE Trans. on Ultrason. Ferroelectr. Freq. Contr. 50, 1272 (2003). doi:10.1109/TUFFC.2003.1244743

    Article  PubMed  Google Scholar 

  21. Y. Yoshino, K. Inoue, M. Takeuchi, K. Ohwada, Vacuum 5, 601 (1998) doi:10.1016/S0042-207X(98)00257-7

    Article  Google Scholar 

  22. H. Chen, J. Zhong, G. Saraf, Z. Zhang, Y. Lu, L.A. Fetter, and C.S. Pai, Proc. SPIE, 5592 (2004), 164. doi:10.1117/12.571509

    Article  ADS  CAS  Google Scholar 

  23. J. Zhong, G. Saraf, S. Muthukumar, H. Chen, Y. Chen, and Y. Lu, J. Electr. Mater. 33, 654 (2004) doi:10.1007/s11664-004-0062-5

    Article  ADS  CAS  Google Scholar 

  24. A. Ballato, Transmission-line Analogs for Piezoelectric Layered Structures (Ph.D. dissertation, Polytechnic Institute of Brooklyn, NY, June 1972).

  25. G. Sauerbrey, Z. Phys. 155 (1959), 206 (in German) doi:10.1007/BF01337937

    Article  ADS  CAS  Google Scholar 

  26. O. Taratula, R. Mendelsohn, E. Galoppini, P.I. Reyes, Z. Zhang, Y. Chen, G. Saraf, and Y. Lu, Langmuir (2009), to appear.

Download references

Acknowledgements

This work has been supported by the NSF (ECS-0224166), New Jersey Commission on Science and Technology (NJCST) with the Research Excellence Center Grant, and AFOSR’s DCT Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Reyes, P.I., Duan, Z. et al. Multifunctional ZnO-Based Thin-Film Bulk Acoustic Resonator for Biosensors. J. Electron. Mater. 38, 1605–1611 (2009). https://doi.org/10.1007/s11664-009-0813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0813-4

Keywords

Navigation