Skip to main content

Advertisement

Log in

Efficient Switched Thermoelectric Refrigerators for Cold Storage Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We present switching methods that make thermoelectric refrigerators efficient and optimal for all cold storage applications. These temporal methods double the coefficient of performance (COPs) of the refrigerators during cooling transients and allow highly energy-efficient operation in the steady state by turning off the thermoelectric devices both electrically and thermally so as to avoid back-conduction of heat through the devices. We describe thermoelectric refrigerator cooling engines that attain these enhancements without using any unreliable mechanically moving switching components such as pumps. These switching techniques can provide a fivefold reduction in energy consumption of cold storage refrigerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature, 413, 597 (2001).doi:10.1038/35098012

    Article  PubMed  ADS  CAS  Google Scholar 

  2. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science, 297, 2229 (2002).doi:10.1126/science.1072886

    Article  PubMed  ADS  CAS  Google Scholar 

  3. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science, 303, 818 (2004).doi:10.1126/science.1092963

    Article  PubMed  ADS  CAS  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G. Chen and Z. Ren, Science, 320, 634 (2008).doi:10.1126/science.1156446

    Article  PubMed  ADS  CAS  Google Scholar 

  5. J. Fenton, J. Lee, and R. Buist, U.S. patent 4,065,936 (1978).

  6. L. Bell, Proc. 21st Int. Conf. Thermoelectrics (2002), p. 477.

  7. C. Hilbert, R. Nelson, J. Reed, B. Lunceford, A. Sommader, K. Hu, and U. Ghoshal, Proc. 18th Int. Conf. Thermoelectrics (1999), p. 117.

  8. A. Miner, A. Majumdar, and U. Ghoshal, Proc. 18th Int. Conf. Thermoelectrics (1999), p. 27.

  9. S. Omer, S. Riffat, and X. Ma, Appl. Thermal Engg., 21, 1265 (2001).doi:10.1016/S1359-4311(01)00010-2

    Article  CAS  Google Scholar 

  10. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science, 314, 1121 (2006).doi:10.1126/science.1132898

    Article  PubMed  ADS  CAS  Google Scholar 

  11. N. Tesla, U.S. patent 1329559 (1920).

Download references

Acknowledgements

The authors would like to thank other members of the Sheetak team for the success of the switched thermoelectric refrigerators. In particular, we would like to thank James Borak, who was responsible for the machining, fabrication, and measurement of several components of the refrigerator described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ghoshal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoshal, U., Guha, A. Efficient Switched Thermoelectric Refrigerators for Cold Storage Applications. J. Electron. Mater. 38, 1148–1153 (2009). https://doi.org/10.1007/s11664-009-0725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0725-3

Keywords

Navigation