Skip to main content
Log in

GaN Nanowire Carrier Concentration Calculated from Light and Dark Resistance Measurements

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We obtained the carrier concentration and mobility of silicon-doped gallium nitride nanowires at room temperature with light and dark resistance data. Current–voltage measurements were performed on single-nanowire devices in the dark and under 360 nm illumination. Field-emission scanning electron microscopy was used to measure the device dimensions. The nanowires were modeled with cylindrical geometry, and solutions were computed with a nonlinear fit algorithm. Simulations were also performed to verify the model. The carrier concentration was bounded by 6 × 1017 cm−3 and 1.3 × 1018 cm−3, and the mobility was between 300 cm2 V−1 s−1 and 600 cm2 V−1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, X.F. Duan, Y. Cui, and C.M. Lieber, Nano Lett. 2, 101 (2002). doi:10.1021/nl015667d

    Article  CAS  Google Scholar 

  2. H.-Y. Cha, H. Wu, M. Chandrashekhar, Y.C. Choi, S. Chae, G. Koley, M.G. Spencer, Nanotechnology. 17, 1264 (2006) doi:10.1088/0957-4484/17/5/018

    Article  ADS  CAS  Google Scholar 

  3. H.Q. Wu, H.Y. Cha, M. Chandrashekhar, M.G. Spencer, G. Koley, J. Electron. Mater. 35, 670 (2006) doi:10.1007/s11664-006-0118-9

    Article  ADS  CAS  Google Scholar 

  4. S. Gradecak, F. Qian, Y. Li, H.G. Park, C.M. Lieber, Appl. Phys. Lett. 87, 173111 (2005) doi:10.1063/1.2115087

    Article  ADS  Google Scholar 

  5. J.B. Schlager, N.A. Sanford, K.A. Bertness, J.M. Barker, A. Roshko, P.T. Blanchard, Appl. Phys. Lett. 88, 213106 (2006) doi:10.1063/1.2206133

    Article  ADS  Google Scholar 

  6. L.H. Robins, K.A. Bertness, J.M. Barker, N.A. Sanford, J.B. Schlager, J. Appl. Phys. 101, 113505 (2007) doi:10.1063/1.2736264

    Article  ADS  Google Scholar 

  7. L.H. Robins, K.A. Bertness, J.M. Barker, N.A. Sanford, J.B. Schlager, J. Appl. Phys. 101, 113506 (2007) doi:10.1063/1.2736266

    Article  ADS  Google Scholar 

  8. S. Roddaro, K. Nilsson, G. Astromskas, L. Samuelson, L.-E. Wernersson, O. Karlstrom, A. Wacker, Appl. Phys. Lett. 92, 253509 (2008) doi:10.1063/1.2949080

    Article  ADS  Google Scholar 

  9. H.Y. Cha, H.Q. Wu, S. Chae, M.G. Spencer, J. Appl. Phys. 100, 4 (2006)

    Google Scholar 

  10. S.Y. Lee, T.H. Kim, D.I. Suh, N.K. Cho, H.K. Seong, S.W. Jung, H.J. Choi, S.K. Lee, Chem. Phys. Lett. 427, 107 (2006) doi:10.1016/j.cplett.2006.05.133

    Article  ADS  CAS  Google Scholar 

  11. A. Motayed, M. Vaudin, A.V. Davydov, J. Melngailis, M.Q. He, S.N. Mohammad, Appl. Phys. Lett. 90, 043104 (2007) doi:10.1063/1.2434153

    Article  ADS  Google Scholar 

  12. L. Sang-Kwon, S. Han-Kyu, C. Ki-Chul, C. Nam-Kyu, C. Heon-Jin, S. Eun-Kyung, N. Kee-Suk, Mater. Sci. Forum. 1549, 527–529 (2006) doi:10.4028/0-87849-425-1.1549

    Google Scholar 

  13. B.S. Simpkins, P.E. Pehrsson, M.L. Taheri, R.M. Stroud, J. Appl. Phys. 101, 094305 (2007) doi:10.1063/1.2728782

    Article  ADS  Google Scholar 

  14. E. Stern, G. Cheng, E. Cimpoiasu, R. Klie, S. Guthrie, J. Klemic, I. Kretzschmar, E. Steinlauf, D. Turner-Evans, E. Broomfield, J. Hyland, R. Koudelka, T. Boone, M. Young, A. Sanders, R. Munden, T. Lee, D. Routenberg, M.A. Reed, Nanotechnology. 16, 2941 (2005) doi:10.1088/0957-4484/16/12/037

    Article  ADS  CAS  Google Scholar 

  15. D. Vashaee, A. Shakouri, J. Goldberger, T. Kuykendall, P. Pauzauskie, P. Yang, J. Appl. Phys. 99, 054310 (2006) doi:10.1063/1.2168229

    Article  ADS  Google Scholar 

  16. O. Wunnicke, Appl. Phys. Lett. 89, 083102 (2006) doi:10.1063/1.2337853

    Article  ADS  Google Scholar 

  17. D.R. Khanal, J. Wu, Nano Lett. 7, 2778 (2007) doi:10.1021/nl071330l

    Article  PubMed  CAS  Google Scholar 

  18. K.A. Bertness, N.A. Sanford, J.M. Barker, J.B. Schlager, A. Roshko, A.V. Davydov, I. Levin, J. Electron. Mater. 35, 576 (2006) doi:10.1007/s11664-006-0102-4

    Article  ADS  CAS  Google Scholar 

  19. K.A. Bertness, A. Roshko, N.A. Sanford, J.M. Barker, A. Davydov, J. Cryst. Growth. 287, 522 (2006) doi:10.1016/j.jcrysgro.2005.11.079

    Article  ADS  CAS  Google Scholar 

  20. K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, N.A. Sanford, J. Cryst. Growth. 300, 94 (2007) doi:10.1016/j.jcrysgro.2006.10.209

    Article  ADS  CAS  Google Scholar 

  21. J. Yan, M.J. Kappers, Z.H. Barber, C.J. Humphreys, Appl. Surf. Sci. 234, 328 (2004) doi:10.1016/j.apsusc.2004.05.066

    Article  ADS  CAS  Google Scholar 

  22. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 2 (New York: McGraw-Hill Book Company, Inc., 1953), p. 1180.

  23. M.-H. Ham, J.-H. Choi, W. Hwang, C. Park, W.-Y. Lee, J.-M. Myoung, Nanotechnology. 17, 2203 (2006) doi:10.1088/0957-4484/17/9/021

    Article  ADS  CAS  Google Scholar 

  24. C. Hwang, J.H. Hyung, S.Y. Lee, C.O. Jang, T.H. Kim, P. Choi, S.K. Lee, J. Phys. D: Appl. Phys. 41, 105103 (2008) doi:10.1088/0022-3727/41/10/105103

    Article  ADS  Google Scholar 

  25. B.S. Simpkins, M.A. Mastro, J.C.R. Eddy, P.E. Pehrsson, J. Appl. Phys. 103, 104313 (2008) doi:10.1063/1.2932072

    Article  ADS  Google Scholar 

  26. E.F. Schubert, Physical Data for GaN (Troy, NY: Rensselaer Polytechnic Institute). http://www.rpi.edu/~schubert/.

  27. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963) doi:10.1137/0111030

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A. v.d.Hart, T. Stoica, H. Luth, Nano Lett. 5, 981 (2005) doi:10.1021/nl0500306

    Article  PubMed  CAS  Google Scholar 

  29. S. Chevtchenko, X. Ni, Q. Fan, A.A. Baski, H. Morkoc, Appl. Phys. Lett. 88, 122104 (2006) doi:10.1063/1.2188589

    Article  ADS  Google Scholar 

  30. S.A. Chevtchenko, M.A. Reshchikov, Q. Fan, X. Ni, Y.T. Moon, A.A. Baski, H. Morkoc, J. Appl. Phys. 101, 113709/1 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Y. Fu, M. Willander, Z.F. Li, W. Lu, Phys. Rev. B. 67, 113313 (2003) doi:10.1103/PhysRevB.67.113313

    Article  ADS  Google Scholar 

  32. H.M. Ng, D. Doppalapudi, T.D. Moustakas, N.G. Weimann, L.F. Eastman, Appl. Phys. Lett. 73, 821 (1998) doi:10.1063/1.122012

    Article  ADS  CAS  Google Scholar 

  33. T. Kuykendall, P. Pauzauskie, S.K. Lee, Y.F. Zhang, J. Goldberger, P.D. Yang, Nano Lett. 3, 1063 (2003) doi:10.1021/nl034422t

    Article  CAS  Google Scholar 

  34. S.-K. Lee, H.-J. Choi, P. Pauzauskie, P. Yang, N.-K. Cho, H.-D. Park, E.-K. Suh, K.-Y. Lim, H.-J. Lee, Phys. Status Solidi B. 241, 2775 (2004) doi:10.1002/pssb.200404989

    Article  ADS  CAS  Google Scholar 

  35. X.F. Duan, C.M. Lieber, J. Am. Chem. Soc. 122, 188 (2000) doi:10.1021/ja993713u

    Article  CAS  Google Scholar 

  36. M.E. Lin, Z. Ma, F.Y. Huang, Z.F. Fan, L.H. Allen, H. Morkoc, Appl. Phys. Lett. 64, 1003 (1994) doi:10.1063/1.111961

    Article  ADS  CAS  Google Scholar 

  37. J.S. Kwak, S.E. Mohney, J.Y. Lin, R.S. Kern, Semicond. Sci. Technol. 15, 756 (2000) doi:10.1088/0268-1242/15/7/316

    Article  ADS  CAS  Google Scholar 

  38. L.K. Li, L.S. Tan, E.F. Chor, J. Cryst. Growth. 268, 499 (2004) doi:10.1016/j.jcrysgro.2004.04.080

    Article  ADS  CAS  Google Scholar 

  39. S.E. Mohney, Y. Wang, M.A. Cabassi, K.K. Lew, S. Dey, J.M. Redwing, T.S. Mayer, Solid-State Electron. 49, 227 (2005) doi:10.1016/j.sse.2004.08.006

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ben Klein from Georgia Institute of Technology for simulations showing the shape of the electrical potential for hexagonal nanowires. The studies conducted by the authors from NIST are supported in part by the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromechanical Transducers (iMINT), funded by DARPA N/MEMS S&T Fundamentals Program (HR0011-06-1-0048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Mansfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansfield, L.M., Bertness, K.A., Blanchard, P.T. et al. GaN Nanowire Carrier Concentration Calculated from Light and Dark Resistance Measurements. J. Electron. Mater. 38, 495–504 (2009). https://doi.org/10.1007/s11664-009-0672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0672-z

Keywords

Navigation