Skip to main content
Log in

ZnO TFT Devices Built on Glass Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

ZnO thin-film transistors (TFTs) were built on glass substrates. The device with a top gate configuration operates in the depletion mode. The ZnO channel was grown by metalorganic chemical vapor deposition (MOCVD) on glass at low temperature. SiO2 was used as the gate dielectric. The TFT has an on/off ratio of ∼4.0 × 104 and a channel field-effect mobility of ∼4.0 cm2/V s. The average transmittance of the ZnO film in the visible wavelength is ∼80%. To compare the characteristics of the TFTs prepared by using a poly-ZnO and epitaxial-ZnO channel, an epi-ZnO TFT with the same configuration and dimensions was made on an r-Al2O3 substrate. The epi-ZnO TFT shows higher field-effect mobility of ∼35 cm2/V s and on/off ratio of ∼108.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003) doi:10.1063/1.1542677

    Article  CAS  Google Scholar 

  2. R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004). doi:10.1063/1.1712015

    Article  CAS  Google Scholar 

  3. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, J. Appl. Phys. 93, 1624 (2003). doi:10.1063/1.1534627

    Article  CAS  Google Scholar 

  4. D. Hong, J.F. Wager, J. Vac. Sci. Technol. B 23, L25 (2005). doi:10.1116/1.2127954

    Article  CAS  Google Scholar 

  5. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, R.F.P. Martins, L.M.N. Pereira, Appl. Phys. Lett. 85, 2541 (2004). doi:10.1063/1.1790587

    Article  CAS  Google Scholar 

  6. H.S. Bae, S. Im, Thin Solid Films, 469–470, 75 (2004). doi:10.1016/j.tsf.2004.06.196

    Article  Google Scholar 

  7. I.D. Kim, Y. Choi, H.L. Tuller, Appl. Phys. Lett. 87, 043509 (2005). doi:10.1063/1.1993762

    Article  Google Scholar 

  8. P.F. Carcia, R.S. McLean, M.H. Reilly, Appl. Phys. Lett. 88, 123509 (2006). doi:10.1063/1.2188379

    Article  Google Scholar 

  9. J. Siddiqui, E. Cagin, D. Chen, J.D. Phillips, Appl. Phys. Lett. 88, 212903 (2006). doi:10.1063/1.2204574

    Article  Google Scholar 

  10. H.H. Hsieh, C.C. Wu, Appl. Phys. Lett. 89, 041109 (2006) doi:10.1063/1.2235895

    Article  Google Scholar 

  11. Y.L. Wang, F. Ren, W. Lim, D.P. Norton, S.J. Pearton, I.I. Kravchenko, J.M. Zavada, Appl. Phys. Lett. 90, 232103 (2007). doi:10.1063/1.2746084

    Article  Google Scholar 

  12. M. Yan, H.T. Zhang, E.J. Widjaja, R.P.H. Chang, J. Appl. Phys. 94, 5240 (2003). doi:10.1063/1.1608473

    Article  CAS  Google Scholar 

  13. J. Zhu, N.W. Emanetoglu, Y. Chen, Y. Lu, J. Electron. Mater. 33, 556 (2004). doi:10.1007/s11664-004-0046-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Chen, H., Saraf, G. et al. ZnO TFT Devices Built on Glass Substrates. J. Electron. Mater. 37, 1237–1240 (2008). https://doi.org/10.1007/s11664-008-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0457-9

Keywords

Navigation