Skip to main content
Log in

Strain Reduction in Selectively Grown CdTe by MBE on Nanopatterned Silicon on Insulator (SOI) Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon-based substrates for the epitaxy of HgCdTe are an attractive low-cost choice for monolithic integration of infrared detectors with mature Si technology and high yield. However, progress in heteroepitaxy of CdTe/Si (for subsequent growth of HgCdTe) is limited by the high lattice and thermal mismatch, which creates strain at the heterointerface that results in a high density of dislocations. Previously we have reported on theoretical modeling of strain partitioning between CdTe and Si on nanopatterned silicon on insulator (SOI) substrates. In this paper, we present an experimental study of CdTe epitaxy on nanopatterned (SOI). SOI (100) substrates were patterned with interferometric lithography and reactive ion etching to form a two-dimensional array of silicon pillars with ∼250 nm diameter and 1 μm pitch. MBE was used to grow CdTe selectively on the silicon nanopillars. Selective growth of CdTe was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Coalescence of CdTe on the silicon nanoislands has been observed from the SEM characterization. Selective growth was achieved with a two-step growth process involving desorption of the nucleation layer followed by regrowth of CdTe at a rate of 0.2 Å s−1. Strain measurements by Raman spectroscopy show a comparable Raman shift (2.7 ± 2 cm−1 from the bulk value of 170 cm−1) in CdTe grown on nanopatterned SOI and planar silicon (Raman shift of 4.4 ± 2 cm−1), indicating similar strain on the nanopatterned substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F.C. Farrow, G.R. Jones, G.M. Williams, I.M. Young, Appl. Phys. Lett. 39, 954 (1981) doi:10.1063/1.92616

    Article  CAS  Google Scholar 

  2. T.H. Myers, Y. Lo, R.N. Bicknell, J.F. Schetzina, Appl. Phys. Lett. 42, 247 (1983) doi:10.1063/1.93903

    Article  CAS  Google Scholar 

  3. M.D. Lange, S. Sivananthan, X. Chu, J.P. Faurie, Appl. Phys. Lett 52, 978 (1988) doi:10.1063/1.99247

    Article  CAS  Google Scholar 

  4. R. Sporken, M.D. Lange, C. Masset, J.P. Faurie, Appl. Phys. Lett. 57, 1449 (1990) doi:10.1063/1.103366

    Article  CAS  Google Scholar 

  5. W.M. Yam, R.J. Paff, J. Appl. Phys. 45, 1456 (1974) doi:10.1063/1.1663432

    Article  Google Scholar 

  6. D. Zubia, S.D. Hersee, J. Appl. Phys. 85, 6492 (1999) doi:10.1063/1.370153

    Article  CAS  Google Scholar 

  7. R. Bommena, C. Fulk, J. Zhao, T.S. Lee, S. Sivananthan, S.R.J. Brueck, S.D. Hersee, J. Electron. Mater. 34, 704 (2005)

    Article  CAS  Google Scholar 

  8. X. Sun, R. Bommena, D. Burckel, S.D. Hersee, S.R.J. Brueck, J. Appl. Phys. 95, 1450 (2004)

    Article  CAS  Google Scholar 

  9. Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991) doi:10.1063/1.106053

    Article  CAS  Google Scholar 

  10. S. Luryi, E. Suhir, Appl. Phys. Lett. 49, 140 (1986) doi:10.1063/1.97204

    Article  CAS  Google Scholar 

  11. S.H. Zaidi, A.S. Chu, S.R.J. Brueck, J. Appl. Phys. 80, 6997 (1996) doi:10.1063/1.363774

    Article  CAS  Google Scholar 

  12. S.R.J. Brueck, Micro and Nano Eng. ’97, eds. M. Hazatkis and E. Gogolides (Elsevier, Amsterdam, 1998), p 145

  13. T. Seldrum, R. Bommena, L. Samain, J. Dumont, S. Sivananthan, and R. Sporken, J. Vac. Technol. B (submitted)

  14. P.M. Amirtharaj, F. Pollak, Appl. Phys. Lett. 45, 789 (1984)

    Article  CAS  Google Scholar 

  15. W.J. Meng, T.A. Perry, J. Appl. Phys. 76, 7824 (1994) doi:10.1063/1.357916

    Article  CAS  Google Scholar 

  16. D. Kirillov, H. Lee, J.S. Harris, J. Appl. Phys. 80, 4058 (1996) doi:10.1063/1.363367

    Article  CAS  Google Scholar 

  17. F.A. Ponce, J.W. Steeds, C.D. Dyer, G.D. Pitt, Appl. Phys. Lett. 69, 2650 (1996) doi:10.1063/1.117547

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bommena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bommena, R., Seldrum, T., Samain, L. et al. Strain Reduction in Selectively Grown CdTe by MBE on Nanopatterned Silicon on Insulator (SOI) Substrates. J. Electron. Mater. 37, 1255–1260 (2008). https://doi.org/10.1007/s11664-008-0456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0456-x

Keywords

Navigation