Skip to main content
Log in

Metal-Organic Chemical Vapor Deposition of Hg1−x Cd x Te Fully Doped Heterostructures Without Postgrowth Anneal for Uncooled MWIR and LWIR Detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Uncertainty in precursor pulse delays and shapes has been found to be an important factor in Hg1−x Cd x Te metal-organic chemical vapor deposition (MOCVD) growth using the interdiffused multilayer process (IMP). Herein, metal-organic concentration changes in the growth zone are examined using an in␣situ infrared (IR) absorption gas monitoring system, and modifications to the interdiffused multilayer process are applied for in␣situ control of stoichiometry, improved morphology, minimized process length, and consumption of precursors. Dimethylcadmium (DMCd) introduction during IMP flush stages in HgTe was used for stoichiometry control. The final stage of heterostructure formation was optimized to prevent Hg outdiffusion. As a result, vacancy concentration was reduced far below the equilibrium level at the growth conditions so the background of n-type doping was revealed. Acceptor doping with arsine (AsH3) and trisdimethylaminoarsenic (TDMAAs) was examined over a wide range of compositions, and doping levels of 5 × 1015 cm−3 to 5 × 1017 cm−3 were obtained. The presence of both arsenic dopants significantly increased the CdTe growth rate. This caused an increase of Cd mole fraction in the grown material. Doped heterostructures can be grown without any postgrowth anneal and used for mid- and long-wavelength infrared (MWIR and LWIR) devices operating at near-ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J.C. Irvine and J.B. Mullin, J. Cryst. Growth 55, 107 (1981)

    Article  CAS  Google Scholar 

  2. J.B. Mullin and S.J.C. Irvine, J. Vac. Sci. Technol. 21, 178 (1982)

    Article  CAS  Google Scholar 

  3. N.T. Gordon, R.S. Hall, C.L. Jones, C.D. Maxey, N.E. Metcalfe, R.A. Catchpole and A.M. White, J. Electron. Mater. 29, 818 (2000)

    Article  CAS  Google Scholar 

  4. J. Piotrowski, Opto-Electron. Rev. 12, 111 (2004)

    CAS  Google Scholar 

  5. A. Piotrowski, W. Gawron, K. Klos, P. Madejczyk, M. Romanis, M. Grudzien, J. Piotrowski and A. Rogalski, Proc. SPIE 5732, 273 (2005)

    Article  CAS  Google Scholar 

  6. T. Elliott, N.T. Gordon and A.M. White, Appl. Phys. Lett. 74, 2881 (1999)

    Article  CAS  Google Scholar 

  7. J. Piotrowski, Opto-Electron. Rev. 12, 111 (2004)

    CAS  Google Scholar 

  8. J. Piotrowski, P. Brzozowski and K. Jóźwikowski, J. Electron. Mater. 32, 672 (2003)

    Article  CAS  Google Scholar 

  9. S.J.C. Irvine, Narrow-Gap II-VI Compounds for Optoelectronic and Electro-magnetic Applications, ed. P. Capper (UK: Chapman & Hall, 1997), pp. 71–96

  10. S.A. Svoronos, W.W. Woo, S.J.C. Irvine, H.O. Sankur and J. Bajaj, J. Electron. Mater. 25, 1561 (1996)

    Article  CAS  Google Scholar 

  11. I. Mora-Sero, C. Polop, C. Ocal, M. Aguilo and V. Munoz-Sanjose, J. Cryst. Growth 257(1–2), 60 (2003)

    Article  CAS  Google Scholar 

  12. H.R. Vydyanath, J. Vac. Sci. Technol. B9, 1716 (1991)

    Google Scholar 

  13. P. Mitra, F.C. Case and M.B. Reine, J. Electron Mater. 27, 510 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Polish Ministry of Science and Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Piotrowski.

Additional information

Student paper; supervisors are A. Rogalski, J. Piotrowski and J. Szmidt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piotrowski, A., Kłos, K. Metal-Organic Chemical Vapor Deposition of Hg1−x Cd x Te Fully Doped Heterostructures Without Postgrowth Anneal for Uncooled MWIR and LWIR Detectors. J. Electron. Mater. 36, 1052–1058 (2007). https://doi.org/10.1007/s11664-007-0171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0171-z

Keywords

Navigation